
3.0.1 Chapter Introduction

Most of us experience the Internet through the World Wide Web, e-mail services, and file-sharing
programs. These applications, and many others, provide the human interface to the underlying network,
enabling us to send and receive information with relative ease. Typically the applications that we use are
intuitive, meaning we can access and use them without knowing how they work. However, for network
professionals, it is important to know how an application is able to format, transmit and interpret
messages that are sent and received across the network.

Visualizing the mechanisms that enable communication across the network is made easier if we use the
layered framework of the Open System Interconnection (OSI) model. In this chapter, we will focus on the
role of one layer, the Application layer and its components: applications, services, and protocols. We will
explore how these three elements make the robust communication across the information network
possible.

In this chapter, you will learn to:
Describe how the functions of the three upper OSI model layers provide network services to end user
applications.
Describe how the TCP/IP Application Layer protocols provide the services specified by the upper layers
of the OSI model.
Define how people use the Application Layer to communicate across the information network.
Describe the function of well-known TCP/IP applications, such as the World Wide Web and email, and
their related services (HTTP, DNS, SMB, DHCP, SMTP/POP, and Telnet).
Describe file-sharing processes that use peer-to-peer applications and the Gnutella protocol.
Explain how protocols ensure services running on one kind of device can send to and receive data from
many different network devices.
Use network analysis tools to examine and explain how common user applications work.

3.1.1 OSI AND TCP MODELS

The Open Systems Interconnection reference model is a layered, abstract representation created as a
guideline for network protocol design. The OSI model divides the networking process into seven logical
layers, each of which has unique functionality and to which are assigned specific services and protocols.

In this model, information is passed from one layer to the next, starting at the Application layer on the
transmitting host, proceeding down the hierarchy to the Physical layer, then passing over the
communications channel to the destination host, where the information proceeds back up the hierarchy,
ending at the Application layer. The figure depicts the steps in this process.

The Application layer, Layer seven, is the top layer of both the OSI and TCP/IP models. It is the layer that
provides the interface between the applications we use to communicate and the underlying network over
which our messages are transmitted. Application layer protocols are used to exchange data between
programs running on the source and destination hosts. There are many Application layer protocols and
new protocols are always being developed.

3.1.1 OSI AND TCP MODELS

Although the TCP/IP protocol suite was developed prior to the definition of the OSI model, the
functionality of the TCP/IP application layer protocols fit roughly into the framework of the top three layers
of the OSI model: Application, Presentation and Session layers.

Most TCP/IP application layer protocols were developed before the emergence of personal computers,
graphical user interfaces and multimedia objects. As a result, these protocols implement very little of the
functionality that is specified in the OSI model Presentation and Session layers.

The Presentation Layer

The Presentation layer has three primary functions:
Coding and conversion of Application layer data to ensure that data from the source device can be
interpreted by the appropriate application on the destination device.
Compression of the data in a manner that can be decompressed by the destination device.
Encryption of the data for transmission and the decryption of data upon receipt by the destination.

Presentation layer implementations are not typically associated with a particular protocol stack. The
standards for video and graphics are examples. Some well-known standards for video include QuickTime
and Motion Picture Experts Group (MPEG). QuickTime is an Apple Computer specification for video and
audio, and MPEG is a standard for video compression and coding.

Among the well-known graphic image formats are Graphics Interchange Format (GIF), Joint Photographic
Experts Group (JPEG), and Tagged Image File Format (TIFF). GIF and JPEG are compression and
coding standards for graphic images, and TIFF is a standard coding format for graphic images.

The Session Layer

As the name of the Session layer implies, functions at this layer create and maintain dialogs between
source and destination applications. The Session layer handles the exchange of information to initiate
dialogs, keep them active, and to restart sessions that are disrupted or idle for a long period of time.

Most applications, like web browsers or e-mail clients, incorporate functionality of the OSI layers 5, 6 and
7.

3.1.1 OSI AND TCP MODELS

The most widely-known TCP/IP Application layer protocols are those that provide for the exchange of
user information. These protocols specify the format and control information necessary for many of the
common Internet communication functions. Among these TCP/IP protocols are:
Domain Name Service Protocol (DNS) is used to resolve Internet names to IP addresses.
Hypertext Transfer Protocol (HTTP) is used to transfer files that make up the Web pages of the World
Wide Web.
Simple Mail Transfer Protocol (SMTP) is used for the transfer of mail messages and attachments.
Telnet, a terminal emulation protocol, is used to provide remote access to servers and networking
devices.
File Transfer Protocol (FTP) is used for interactive file transfer between systems.

The protocols in the TCP/IP suite are generally defined by Requests for Comments (RFCs). The Internet
Engineering Task Force maintains the RFCs as the standards for the TCP/IP suite.

3.1.2 APPLICATION LAYER SOFTWARE

The functions associated with the Application layer protocols enable our human network to interface with
the underlying data network. When we open a web browser or an instant message window, an application
is started, and the program is put into the device's memory where it is executed. Each executing program
loaded on a device is referred to as a process.

Within the Application layer, there are two forms of software programs or processes that provide access
to the network: applications and services.

Network-Aware Applications

Applications are the software programs used by people to communicate over the network. Some end-
user applications are network-aware, meaning that they implement the application layer protocols and are
able to communicate directly with the lower layers of the protocol stack. E-mail clients and web browsers
are examples of these types of applications.

Application layer Services

Other programs may need the assistance of Application layer services to use network resources, like file
transfer or network print spooling. Though transparent to the user, these services are the programs that
interface with the network and prepare the data for transfer. Different types of data - whether it is text,
graphics, or video - require different network services to ensure that it is properly prepared for processing
by the functions occurring at the lower layers of OSI model.

Each application or network service uses protocols which define the standards and data formats to be
used. Without protocols, the data network would not have a common way to format and direct data. In
order to understand the function of various network services, it is necessary to become familiar with the
underlying protocols that govern their operation.

3.1.3 USER APPLICATIONS, SERVICES AND LAYER PROTOCOLS

As mentioned previously, the Application layer uses protocols that are implemented within applications
and services. While applications provide people with a way to create messages and application layer
services establish an interface to the network, protocols provide the rules and formats that govern how
data is treated. All three components may be used by a single executable program and may even use the
same name. For example, when discussing "Telnet" we could be referring to the application, the service,
or the protocol.

In the OSI model, applications that interact directly with people are considered to be at the top of the
stack, as are the people themselves. Like all layers within the OSI model, the Application layer relies on
the functions of the lower layers in order to complete the communication process. Within the Application
layer, protocols specify what messages are exchanged between the source and destination hosts, the
syntax of the control commands, the type and format of the data being transmitted, and the appropriate
methods for error notification and recovery.

3.1.4 APPLICATION LAYER PROTOCOLS

Application layer protocols are used by both the source and destination devices during a communication
session. In order for the communications to be successful, the application layer protocols implemented on
the source and destination host must match.

Protocols establish consistent rules for exchanging data between applications and services loaded on the
participating devices. Protocols specify how data inside the messages is structured and the types of
messages that are sent between source and destination. These messages can be requests for services,
acknowledgments, data messages, status messages, or error messages. Protocols also define message
dialogues, ensuring that a message being sent is met by the expected response and the correct services
are invoked when data transfer occurs.

Many different types of applications communicate across data networks. Therefore, Application layer
services must implement multiple protocols to provide the desired range of communication experiences.
Each protocol has a specific purpose and contains the characteristics required to meet that purpose. The
right protocol details in each layer must be followed so that the functions at one layer interface properly
with the services in the lower layer.

Applications and services may also use multiple protocols in the course of a single conversation. One
protocol may specify how to establish the network connection and another describe the process for the
data transfer when the message is passed to the next lower layer.

3.2.1 CLIENT SERVER MODEL

When people attempt to access information on their device, whether it is a PC, laptop, PDA, cell phone,
or some other device connected to a network, the data may not be physically stored on their device. If
that is the case, a request to access that information must be made to the device where the data resides.

The Client/Server model

In the client/server model, the device requesting the information is called a client and the device
responding to the request is called a server. Client and server processes are considered to be in the
Application layer. The client begins the exchange by requesting data from the server, which responds by
sending one or more streams of data to the client. Application layer protocols describe the format of the
requests and responses between clients and servers. In addition to the actual data transfer, this
exchange may also require control information, such as user authentication and the identification of a
data file to be transferred.

One example of a client/server network is a corporate environment where employees use a company e-
mail server to send, receive and store e-mail. The e-mail client on an employee computer issues a
request to the e-mail server for any unread mail. The server responds by sending the requested e-mail to
the client.

Although data is typically described as flowing from the server to the client, some data always flows from
the client to the server. Data flow may be equal in both directions, or may even be greater in the direction
going from the client to the server. For example, a client may transfer a file to the server for storage
purposes. Data transfer from a client to a server is referred to as an upload and data from a server to a
client as a download.

3.2.2 SERVERS

In a general networking context, any device that responds to requests from client applications is
functioning as a server. A server is usually a computer that contains information to be shared with many
client systems. For example, web pages, documents, databases, pictures, video, and audio files can all
be stored on a server and delivered to requesting clients. In other cases, such as a network printer, the
print server delivers the client print requests to the specified printer.

Different types of server applications may have different requirements for client access. Some servers
may require authentication of user account information to verify if the user has permission to access the
requested data or to use a particular operation. Such servers rely on a central list of user accounts and
the authorizations, or permissions, (both for data access and operations) granted to each user. When
using an FTP client, for example, if you request to upload data to the FTP server, you may have
permission to write to your individual folder but not to read other files on the site.

In a client/server network, the server runs a service, or process, sometimes called a server daemon. Like
most services, daemons typically run in the background and are not under an end user's direct control.
Daemons are described as "listening" for a request from a client, because they are programmed to
respond whenever the server receives a request for the service provided by the daemon. When a
daemon "hears" a request from a client, it exchanges appropriate messages with the client, as required
by its protocol, and proceeds to send the requested data to the client in the proper format.

3.2.3 APPLICATION LAYER SERVICES AND PROTOCOLS

A single application may employ many different supporting Application layer services; thus what appears
to the user as one request for a web page may, in fact, amount to dozens of individual requests. And for
each request, multiple processes may be executed. For example, a client may require several individual
processes to formulate just one request to a server.

Additionally, servers typically have multiple clients requesting information at the same time. For example,
a Telnet server may have many clients requesting connections to it. These individual client requests must
be handled simultaneously and separately for the network to succeed. The Application layer processes
and services rely on support from lower layer functions to successfully manage the multiple
conversations.

3.2.4 PEER TO PEER NETWORKING AND APPLICATIONS (P2P)

The Peer-to-Peer Model

In addition to the client/server model for networking, there is also a peer-to-peer model. Peer-to-peer
networking involves two distinct forms: peer-to-peer network design and peer-to-peer applications (P2P).
Both forms have similar features but in practice work very differently.

Peer-to-Peer Networks

In a peer-to-peer network, two or more computers are connected via a network and can share resources
(such as printers and files) without having a dedicated server. Every connected end device (known as a
peer) can function as either a server or a client. One computer might assume the role of server for one
transaction while simultaneously serving as a client for another. The roles of client and server are set on a
per request basis.

A simple home network with two connected computers sharing a printer is an example of a peer-to-peer
network. Each person can set his or her computer to share files, enable networked games, or share an
Internet connection. Another example of peer-to-peer network functionality is two computers connected to
a large network that use software applications to share resources between one another through the
network.

Unlike the client/server model, which uses dedicated servers, peer-to-peer networks decentralize the
resources on a network. Instead of locating information to be shared on dedicated servers, information
can be located anywhere on any connected device. Most of the current operating systems support file
and print sharing without requiring additional server software. Because peer-to-peer networks usually do
not use centralized user accounts, permissions, or monitors, it is difficult to enforce security and access
policies in networks containing more than just a few computers. User accounts and access rights must be
set individually on each peer device.

3.2.4 PEER TO PEER NETWORKING AND APPLICATIONS (P2P)

Peer-to-Peer Applications

A peer-to-peer application (P2P), unlike a peer-to-peer network, allows a device to act as both a client
and a server within the same communication. In this model, every client is a server and every server a
client. Both can initiate a communication and are considered equal in the communication process.
However, peer-to-peer applications require that each end device provide a user interface and run a
background service. When you launch a specific peer-to-peer application it invokes the required user
interface and background services. After that the devices can communicate directly.

Some P2P applications use a hybrid system where resource sharing is decentralized but the indexes that
point to resource locations are stored in a centralized directory. In a hybrid system, each peer accesses
an index server to get the location of a resource stored on another peer. The index server can also help
connect two peers, but once connected, the communication takes place between the two peers without
additional communication to the index server.

Peer-to-peer applications can be used on peer-to-peer networks, client/server networks, and across the
Internet.

3.3.1 DNS SERVICES AND PROTOCOLS

Now that we have a better understanding of how applications provide an interface for the user and
provide access to the network, we will take a look at some specific commonly used protocols.

As we will see later in this course, the Transport layer uses an addressing scheme called a port number.
Port numbers identify applications and Application layer services that are the source and destination of
data. Server programs generally use predefined port numbers that are commonly known by clients. As we
examine the different TCP/IP Application layer protocols and services, we will be referring to the TCP and

UDP port numbers normally associated with these services. Some of these services are:

Domain Name System (DNS) - TCP/UDP Port 53
Hypertext Transfer Protocol (HTTP) - TCP Port 80

Simple Mail Transfer Protocol (SMTP) - TCP Port 25
Post Office Protocol (POP) - UDP Port 110

Telnet - TCP Port 23
Dynamic Host Configuration Protocol - UDP Port 67
File Transfer Protocol (FTP) - TCP Ports 20 and 21

DNS

In data networks, devices are labeled with numeric IP addresses, so that they can participate in sending
and receiving messages over the network. However, most people have a hard time remembering this
numeric address. Hence, domain names were created to convert the numeric address into a simple,
recognizable name.

On the Internet these domain names, such as www.cisco.com, are much easier for people to remember
than 198.133.219.25, which is the actual numeric address for this server. Also, if Cisco decides to change
the numeric address, it is transparent to the user, since the domain name will remain www.cisco.com. The

new address will simply be linked to the existing domain name and connectivity is maintained. When
networks were small, it was a simple task to maintain the mapping between domain names and the
addresses they represented. However, as networks began to grow and the number of devices increased,
this manual system became unworkable.

The Domain Name System (DNS) was created for domain name to address resolution for these networks.
DNS uses a distributed set of servers to resolve the names associated with these numbered addresses.

The DNS protocol defines an automated service that matches resource names with the required numeric
network address. It includes the format for queries, responses, and data formats. DNS protocol
communications use a single format called a message. This message format is used for all types of client
queries and server responses, error messages, and the transfer of resource record information between
servers.

3.3.1 DNS SERVICES AND PROTOCOLS

DNS is a client/server service; however, it differs from the other client/server services that we are
examining. While other services use a client that is an application (such as web browser, e-mail client),
the DNS client runs as a service itself. The DNS client, sometimes called the DNS resolver, supports
name resolution for our other network applications and other services that need it.

When configuring a network device, we generally provide one or more DNS Server addresses that the
DNS client can use for name resolution. Usually the Internet service provider provides the addresses to
use for the DNS servers. When a user's application requests to connect to a remote device by name, the
requesting DNS client queries one of these name servers to resolve the name to a numeric address.

Computer operating systems also have a utility called nslookup that allows the user to manually query the
name servers to resolve a given host name. This utility can also be used to troubleshoot name resolution
issues and to verify the current status of the name servers.

In the figure, when the nslookup is issued, the default DNS server configured for your host is displayed. In
this example, the DNS server is dns-sjk.cisco.com which has an address of 171.68.226.120.

We then can type the name of a host or domain for which we wish to get the address. In the first query in
the figure, a query is made for www.cisco.com. The responding name server provides the address of
198.133.219.25.

The queries shown in the figure are only simple tests. The nslookup has many options available for
extensive testing and verification of the DNS process.

3.3.1 DNS SERVICES AND PROTOCOLS

A DNS server provides the name resolution using the name daemon, which is often called named,
(pronounced name-dee).

The DNS server stores different types of resource records used to resolve names. These records contain
the name, address, and type of record.

Some of these record types are:
A - an end device address
NS - an authoritative name server
CNAME - the canonical name (or Fully Qualified Domain Name) for an alias; used when multiple services
have the single network address but each service has its own entry in DNS
MX - mail exchange record; maps a domain name to a list of mail exchange servers for that domain

When a client makes a query, the server's "named" process first looks at its own records to see if it can
resolve the name. If it is unable to resolve the name using its stored records, it contacts other servers in
order to resolve the name.

The request may be passed along to a number of servers, which can take extra time and consume
bandwidth. Once a match is found and returned to the original requesting server, the server temporarily
stores the numbered address that matches the name in cache.

If that same name is requested again, the first server can return the address by using the value stored in
its name cache. Caching reduces both the DNS query data network traffic and the workloads of servers
higher up the hierarchy. The DNS Client service on Windows PCs optimizes the performance of DNS
name resolution by storing previously resolved names in memory, as well. The ipconfig /displaydns
command displays all of the cached DNS entries on a Windows XP or 2000 computer system.

3.3.1 DNS SERVICES AND PROTOCOLS

The Domain Name System uses a hierarchical system to create a name database to provide name
resolution. The hierarchy looks like an inverted tree with the root at the top and branches below.

At the top of the hierarchy, the root servers maintain records about how to reach the top-level domain
servers, which in turn have records that point to the secondary level domain servers and so on.

The different top-level domains represent either the type of organization or the country of origin.
Examples of top-level domains are:
.au - Australia
.co - Colombia
.com - a business or industry
.jp - Japan
.org - a non-profit organization

After top-level domains are second-level domain names, and below them are other lower level domains.

Each domain name is a path down this inverted tree starting from the root.

For example, as shown in the figure, the root DNS server may not know exactly where the e-mail server
mail.cisco.com is located, but it maintains a record for the "com" domain within the top-level domain.
Likewise, the servers within the "com" domain may not have a record for mail.cisco.com, but they do have
a record for the "cisco.com" domain. The servers within the cisco.com domain have a record (a MX
record to be precise) for mail.cisco.com.

The Domain Name System relies on this hierarchy of decentralized servers to store and maintain these
resource records. The resource records list domain names that the server can resolve and alternative

servers that can also process requests. If a given server has resource records that correspond to its level
in the domain hierarchy, it is said to be authoritative for those records.

For example, a name server in the cisco.netacad.net domain would not be authoritative for the
mail.cisco.com record because that record is held at a higher domain level server, specifically the name
server in the cisco.com domain.

Links

http://www.ietf.org//rfc/rfc1034.txt

http://www.ietf.org/rfc/rfc1035.txt

3.3.2 WWW SERVICE AND HTTP

When a web address (or URL) is typed into a web browser, the web browser establishes a connection to
the web service running on the server using the HTTP protocol. URLs (or Uniform Resource Locator) and
URIs (Uniform Resource Identifier) are the names most people associate with web addresses.

The URL http://www.cisco.com/index.html is an example of a URL that refers to a specific resource - a
web page named index.html on a server identified as cisco.com (click the tabs in the figure to see the
steps used by HTTP).

Web browsers are the client applications our computers use to connect to the World Wide Web and
access resources stored on a web server. As with most server processes, the web server runs as a
background service and makes different types of files available.

In order to access the content, web clients make connections to the server and request the desired
resources. The server replies with the resources and, upon receipt, the browser interprets the data and
presents it to the user.

Browsers can interpret and present many data types, such as plain text or Hypertext Markup Language
(HTML, the language in which web pages are constructed). Other types of data, however, may require
another service or program, typically referred to as plug-ins or add-ons. To help the browser determine
what type of file it is receiving, the server specifies what kind of data the file contains.

To better understand how the web browser and web client interact, we can examine how a web page is
opened in a browser. For this example, we will use the URL: http://www.cisco.com/web-server.htm.

First, the browser interprets the three parts of the URL:

1. http (the protocol or scheme)

2. www.cisco.com (the server name)

3. web-server.htm (the specific file name requested).

The browser then checks with a name server to convert www.cisco.com into a numeric address, which it
uses to connect to the server. Using the HTTP protocol requirements, the browser sends a GET request
to the server and asks for the file web-server.htm. The server in turn sends the HTML code for this web
page to the browser. Finally, the browser deciphers the HTML code and formats the page for the browser
window.

The Hypertext Transfer Protocol (HTTP), one of the protocols in the TCP/IP suite, was originally
developed to publish and retrieve HTML pages and is now used for distributed, collaborative information
systems. HTTP is used across the World Wide Web for data transfer and is one of the most used
application protocols.

HTTP specifies a request/response protocol. When a client, typically a web browser, sends a request
message to a server, the HTTP protocol defines the message types the client uses to request the web
page and also the message types the server uses to respond. The three common message types are
GET, POST, and PUT.

GET is a client request for data. A web browser sends the GET message to request pages from a web
server. As shown in the figure, once the server receives the GET request, it responds with a status line,
such as HTTP/1.1 200 OK, and a message of its own, the body of which may be the requested file, an
error message, or some other information.

POST and PUT are used to send messages that upload data to the web server. For example, when the
user enters data into a form embedded in a web page, POST includes the data in the message sent to
the server.

PUT uploads resources or content to the web server.

Although it is remarkably flexible, HTTP is not a secure protocol. The POST messages upload information
to the server in plain text that can be intercepted and read. Similarly, the server responses, typically
HTML pages, are also unencrypted.

For secure communication across the Internet, the HTTP Secure (HTTPS) protocol is used for accessing
or posting web server information. HTTPS can use authentication and encryption to secure data as it
travels between the client and server. HTTPS specifies additional rules for passing data between the
Application layer and the Transport Layer.

3.3.3 EMAIL SERVICES AND SMTP/POP PROTOCOLS

E-mail, the most popular network service, has revolutionized how people communicate through its
simplicity and speed. Yet to run on a computer or other end device, e-mail requires several applications
and services. Two example Application layer protocols are Post Office Protocol (POP) and Simple Mail
Transfer Protocol (SMTP), shown in the figure. As with HTTP, these protocols define client/server
processes.

When people compose e-mail messages, they typically use an application called a Mail User Agent
(MUA), or e-mail client. The MUA allows messages to be sent and places received messages into the
client's mailbox, both of which are distinct processes.

In order to receive e-mail messages from an e-mail server, the e-mail client can use POP. Sending e-mail
from either a client or a server uses message formats and command strings defined by the SMTP
protocol. Usually an e-mail client provides the functionality of both protocols within one application.

3.3.3 EMAIL SERVICES AND SMTP/POP PROTOCOLS

E-mail Server Processes - MTA and MDA

The e-mail server operates two separate processes:
Mail Transfer Agent (MTA)
Mail Delivery Agent (MDA)

The Mail Transfer Agent (MTA) process is used to forward e-mail. As shown in the figure, the MTA
receives messages from the MUA or from another MTA on another e-mail server. Based on the message
header, it determines how a message has to be forwarded to reach its destination. If the mail is
addressed to a user whose mailbox is on the local server, the mail is passed to the MDA. If the mail is for
a user not on the local server, the MTA routes the e-mail to the MTA on the appropriate server.

3.3.3 EMAIL SERVICES AND SMTP/POP PROTOCOLS

In the figure, we see that the Mail Delivery Agent (MDA) accepts a piece of e-mail from a Mail Transfer
Agent (MTA) and performs the actual delivery. The MDA receives all the inbound mail from the MTA and
places it into the appropriate users' mailboxes. The MDA can also resolve final delivery issues, such as
virus scanning, spam filtering, and return-receipt handling. Most e-mail communications use the MUA,
MTA, and MDA applications. However, there are other alternatives for e-mail delivery.

A client may be connected to a corporate e-mail system, such as IBM's Lotus Notes, Novell's Groupwise,
or Microsoft's Exchange. These systems often have their own internal e-mail format, and their clients
typically communicate with the e-mail server using a proprietary protocol.

The server sends or receives e-mail via the Internet through the product's Internet mail gateway, which
performs any necessary reformatting. If, for example, two people who work for the same company
exchange e-mail with each other using a proprietary protocol, their messages may stay completely within
the company's corporate e-mail system.

As another alternative, computers that do not have an MUA can still connect to a mail service on a web
browser in order to retrieve and send messages in this manner. Some computers may run their own MTA
and manage inter-domain e-mail themselves.

3.3.3 EMAIL SERVICES AND SMTP/POP PROTOCOLS

As mentioned earlier, e-mail can use the protocols, POP and SMTP (see the figure for an explanation of
how they each work). POP and POP3 (Post Office Protocol, version 3) are inbound mail delivery
protocols and are typical client/server protocols. They deliver e-mail from the e-mail server to the client
(MUA). The MDA listens for when a client connects to a server. Once a connection is established, the
server can deliver the e-mail to the client.

The Simple Mail Transfer Protocol (SMTP), on the other hand, governs the transfer of outbound e-mail
from the sending client to the e-mail server (MDA), as well as the transport of e-mail between e-mail
servers (MTA). SMTP enables e-mail to be transported across data networks between different types of
server and client software and makes e-mail exchange over the Internet possible.

The SMTP protocol message format uses a rigid set of commands and replies. These commands support
the procedures used in SMTP, such as session initiation, mail transaction, forwarding mail, verifying
mailbox names, expanding mailing lists, and the opening and closing exchanges.

Some of the commands specified in the SMTP protocol are:
HELO - identifies the SMTP client process to the SMTP server process
EHLO - Is a newer version of HELO, which includes services extensions
MAIL FROM - Identifies the sender
RCPT TO - Identifies the recipient
DATA - Identifies the body of the message

3.3.4 FTP

The File Transfer Protocol (FTP) is another commonly used Application layer protocol. FTP was
developed to allow for file transfers between a client and a server. An FTP client is an application that
runs on a computer that is used to push and pull files from a server running the FTP daemon (FTPd).

To successfully transfer files, FTP requires two connections between the client and the server: one for
commands and replies, the other for the actual file transfer.

The client establishes the first connection to the server on TCP port 21. This connection is used for
control traffic, consisting of client commands and server replies.

The client establishes the second connection to the server over TCP port 20. This connection is for the
actual file transfer and is created every time there is a file transferred.

The file transfer can happen in either direction. The client can download (pull) a file from the server or, the
client can upload (push) a file to the server.

3.3.5 DHCP

The Dynamic Host Configuration Protocol (DHCP) service enables devices on a network to obtain IP
addresses and other information from a DHCP server. This service automates the assignment of IP
addresses, subnet masks, gateway and other IP networking parameters.

DHCP allows a host to obtain an IP address dynamically when it connects to the network. The DHCP
server is contacted and an address requested. The DHCP server chooses an address from a configured
range of addresses called a pool and assigns ("leases") it to the host for a set period.

On larger local networks, or where the user population changes frequently, DHCP is preferred. New users
may arrive with laptops and need a connection. Others have new workstations that need to be connected.
Rather than have the network administrator assign IP addresses for each workstation, it is more efficient
to have IP addresses assigned automatically using DHCP.

DHCP distributed addresses are not permanently assigned to hosts but are only leased for a period of
time. If the host is powered down or taken off the network, the address is returned to the pool for reuse.
This is especially helpful with mobile users that come and go on a network. Users can freely move from
location to location and re-establish network connections. The host can obtain an IP address once the
hardware connection is made, either via a wired or wireless LAN.

DHCP makes it possible for you to access the Internet using wireless hotspots at airports or coffee shops.
As you enter the area, your laptop DHCP client contacts the local DHCP server via a wireless connection.
The DHCP server assigns an IP address to your laptop.

As the figure shows, various types of devices can be DHCP servers when running DHCP service
software. The DHCP server in most medium to large networks is usually a local dedicated PC-based
server.

With home networks the DHCP server is usually located at the ISP and a host on the home network
receives its IP configuration directly from the ISP.

DHCP can pose a security risk because any device connected to the network can receive an address.
This risk makes physical security an important factor when determining whether to use dynamic or
manual addressing.

Dynamic and static addressing both have their places in network designs. Many networks use both DHCP
and static addressing. DHCP is used for general purpose hosts such as end user devices, and fixed
addresses are used for network devices such as gateways, switches, servers and printers.

3.3.5 DHCP

Without DHCP, users have to manually input the IP address, subnet mask and other network settings in
order to join the network. The DHCP server maintains a pool of IP addresses and leases an address to
any DHCP-enabled client when the client is powered on. Because the IP addresses are dynamic (leased)
rather than static (permanently assigned), addresses no longer in use are automatically returned to the
pool for reallocation. When a DHCP-configured device boots up or connects to the network, the client
broadcasts a DHCP DISCOVER packet to identify any available DHCP servers on the network. A DHCP
server replies with a DHCP OFFER, which is a lease offer message with an assigned IP address, subnet
mask, DNS server, and default gateway information as well as the duration of the lease.

The client may receive multiple DHCP OFFER packets if there is more than one DHCP server on the
local network, so it must choose between them, and broadcast a DHCP REQUEST packet that identifies
the explicit server and lease offer that the client is accepting. A client may choose to request an address
that it had previously been allocated by the server.

Assuming that the IP address requested by the client, or offered by the server, is still valid, the server
would return a DHCP ACK message that acknowledges to the client the lease is finalized. If the offer is
no longer valid - perhaps due to a time-out or another client allocating the lease - then the selected server
will respond with a DHCP NAK message (Negative Acknowledgement). If a DHCP NAK message is
returned, then the selection process must begin again with a new DHCP DISCOVER message being
transmitted.

Once the client has the lease, it must be renewed prior to the lease expiration through another DHCP
REQUEST message.

The DHCP server ensures that all IP addresses are unique (an IP address cannot be assigned to two
different network devices simultaneously). Using DHCP enables network administrators to easily
reconfigure client IP addresses without having to manually make changes to the clients. Most Internet
providers use DHCP to allocate addresses to their customers who do not require a static address.

The fourth CCNA Exploration course will cover the operation of DHCP in greater detail.

3.3.6 FILE SHARING USING SMB PROTOCOL

The Server Message Block (SMB) is a client/server file sharing protocol. IBM developed Server Message
Block (SMB) in the late 1980s to describe the structure of shared network resources, such as directories,
files, printers, and serial ports. It is a request-response protocol. Unlike the file sharing supported by FTP,
clients establish a long term connection to servers. Once the connection is established, the user of the
client can access the resources on the server as if the resource is local to the client host.

SMB file-sharing and print services have become the mainstay of Microsoft networking. With the
introduction of the Windows 2000 series of software, Microsoft changed the underlying structure for using
SMB. In previous versions of Microsoft products, the SMB services used a non-TCP/IP protocol to
implement name resolution. Beginning with Windows 2000, all subsequent Microsoft products use DNS
naming. This allows TCP/IP protocols to directly support SMB resource sharing, as shown in the figure.

The LINUX and UNIX operating systems also provide a method of sharing resources with Microsoft
networks using a version of SMB called SAMBA. The Apple Macintosh operating systems also support
resource sharing using the SMB protocol.

3.3.6 FILE SHARING USING SMB PROTOCOL

The SMB protocol describes file system access and how clients can make requests for files. It also
describes the SMB protocol inter-process communication. All SMB messages share a common format.
This format uses a fixed-sized header followed by a variable-sized parameter and data component.

SMB messages can:
Start, authenticate, and terminate sessions
Control file and printer access
Allow an application to send or receive messages to or from another device

The SMB file exchange process is shown in the figure.

3.3.7 P2P SERVICES AND GNUTELLA PROTOCOL

You learned about FTP and SMB as ways of obtaining files, here is another Application protocol. Sharing
files over the Internet has become extremely popular. With P2P applications based on the Gnutella
protocol, people can make files on their hard disks available to others for downloading. Gnutella-
compatible client software allows users to connect to Gnutella services over the Internet and to locate and
access resources shared by other Gnutella peers.

Many client applications are available for accessing the Gnutella network, including: BearShare,
Gnucleus, LimeWire, Morpheus, WinMX and XoloX (see a screen capture of LimeWire in the figure).
While the Gnutella Developer Forum maintains the basic protocol, application vendors often develop
extensions to make the protocol work better on their applications.

3.3.7 P2P SERVICES AND GNUTELLA PROTOCOL

Many P2P applications do not use a central database to record all the files available on the peers.
Instead, the devices on the network each tell the other what files are available when queried and use the
Gnutella protocol and services to support locating resources. See the figure.

When a user is connected to a Gnutella service, the client applications will search for other Gnutella
nodes to connect to. These nodes handle queries for resource locations and replies to those requests.
They also govern control messages, which help the service discover other nodes. The actual file transfers
usually rely on HTTP services.

The Gnutella protocol defines five different packet types:
ping - for device discovery
pong - as a reply to a ping
query - for file location
query hit - as a reply to a query
push - as a download request

3.3.8 TELNET SERVICES AND PROTOCOL

Long before desktop computers with sophisticated graphical interfaces existed, people used text-based
systems which were often just display terminals physically attached to a central computer. Once networks
were available, people needed a way to remotely access the computer systems in the same manner that
they did with the directly attached terminals.

Telnet was developed to meet that need. Telnet dates back to the early 1970s and is among the oldest of
the Application layer protocols and services in the TCP/IP suite. Telnet provides a standard method of
emulating text-based terminal devices over the data network. Both the protocol itself and the client
software that implements the protocol are commonly referred to as Telnet.

Appropriately enough, a connection using Telnet is called a Virtual Terminal (VTY) session, or
connection. Rather than using a physical device to connect to the server, Telnet uses software to create a
virtual device that provides the same features of a terminal session with access to the server command
line interface (CLI).

To support Telnet client connections, the server runs a service called the Telnet daemon. A virtual
terminal connection is established from an end device using a Telnet client application. Most operating
systems include an Application layer Telnet client. On a Microsoft Windows PC, Telnet can be run from
the command prompt. Other common terminal applications that run as Telnet clients are HyperTerminal,
Minicom, and TeraTerm.

Once a Telnet connection is established, users can perform any authorized function on the server, just as
if they were using a command line session on the server itself. If authorized, they can start and stop
processes, configure the device, and even shut down the system.

3.3.8 TELNET SERVICES AND PROTOCOL

Telnet is a client/server protocol and it specifies how a VTY session is established and terminated. It also
provides the syntax and order of the commands used to initiate the Telnet session, as well as control
commands that can be issued during a session. Each Telnet command consists of at least two bytes. The
first byte is a special character called the Interpret as Command (IAC) character. As its name implies, the
IAC defines the next byte as a command rather than text.

Some sample Telnet protocol commands include:

Are You There (AYT) - Lets the user request that something appear on the terminal screen to indicate
that the VTY session is active.

Erase Line (EL) - Deletes all text from the current line.

Interrupt Process (IP) - Suspends, interrupts, aborts, or terminates the process to which the Virtual
Terminal is connected. For example, if a user started a program on the Telnet server via the VTY, he or
she could send an IP command to stop the program.

While the Telnet protocol supports user authentication, it does not support the transport of encrypted
data. All data exchanged during a Telnet sessions is transported as plain text across the network. This
means that the data can be intercepted and easily understood.

If security is a concern, the Secure Shell (SSH) protocol offers an alternate and secure method for server
access. SSH provides the structure for secure remote login and other secure network services. It also
provides stronger authentication than Telnet and supports the transport of session data using encryption.
As a best practice, network professionals should always use SSH in place of Telnet, whenever possible.

Later in this course, we will use Telnet and SSH to access and configure network devices over the lab
network.

3.4.1 DATA STREAM CAPTURE

In this activity, you will use a computer that has a microphone and Microsoft Sound Recorder or Internet
access so that an audio file can be downloaded.

3.4.2 LAB MANAGING A WEB SERVER

In this lab you will download, install, and configure the popular Apache web server. A web browser will be
used to connect to the server, and Wireshark will be used to capture the communication. Analysis of the
capture will aid students in understanding how the HTTP protocol operates.

3.4.3 LAB EMAIL SERVICES AND PROTOCOLS

n this lab, you will configure and use an e-mail client application to connect to eagle-server network
services. You will then monitor the communication with Wireshark and analyze the captured packets.

3.5.1 SUMMARY AND REVIEW

The Application layer is responsible for directly accessing the underlying processes that manage and
deliver communication to the human network. This layer serves as the source and destination of
communications across data networks.

The Application layer applications, protocols, and services enable users to interact with the data network
in a way that is meaningful and effective.

Applications are computer programs with which the user interacts and which initiate the data transfer
process at the user's request.

Services are background programs that provide the connection between the Application layer and the
lower layers of the networking model.

Protocols provide a structure of agreed-upon rules and processes that ensure services running on one
particular device can send and receive data from a range of different network devices.

Delivery of data over the network can be requested from a server by a client, or between devices that
operate in a peer-to-peer arrangement, where the client/server relationship is established according to
which device is the source and destination at that time. Messages are exchanged between the
Application layer services at each end device in accordance with the protocol specifications to establish
and use these relationships.

Protocols like HTTP, for example, support the delivery of web pages to end devices. SMTP/POP
protocols support sending and receiving e-mail. SMB enables users to share files. DNS resolves the
human legible names used to refer to network resources into numeric addresses usable by the network.

