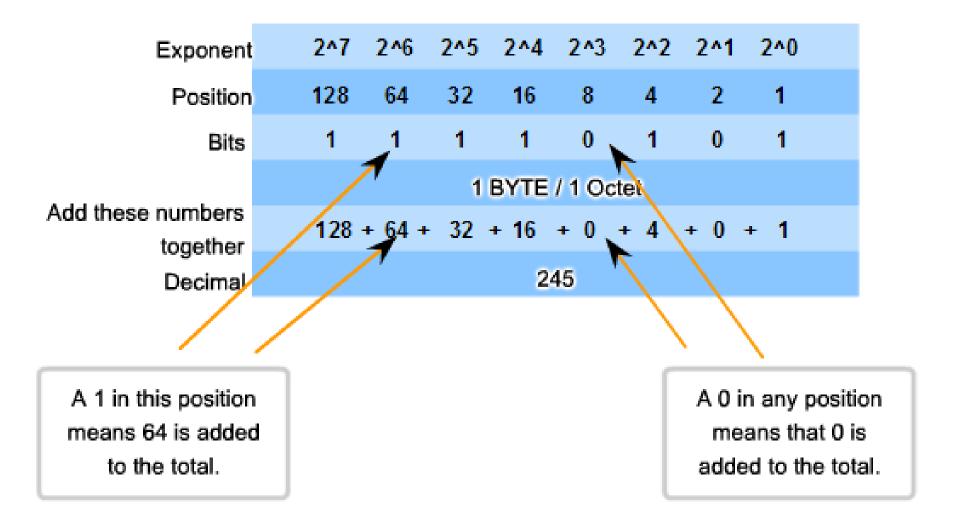
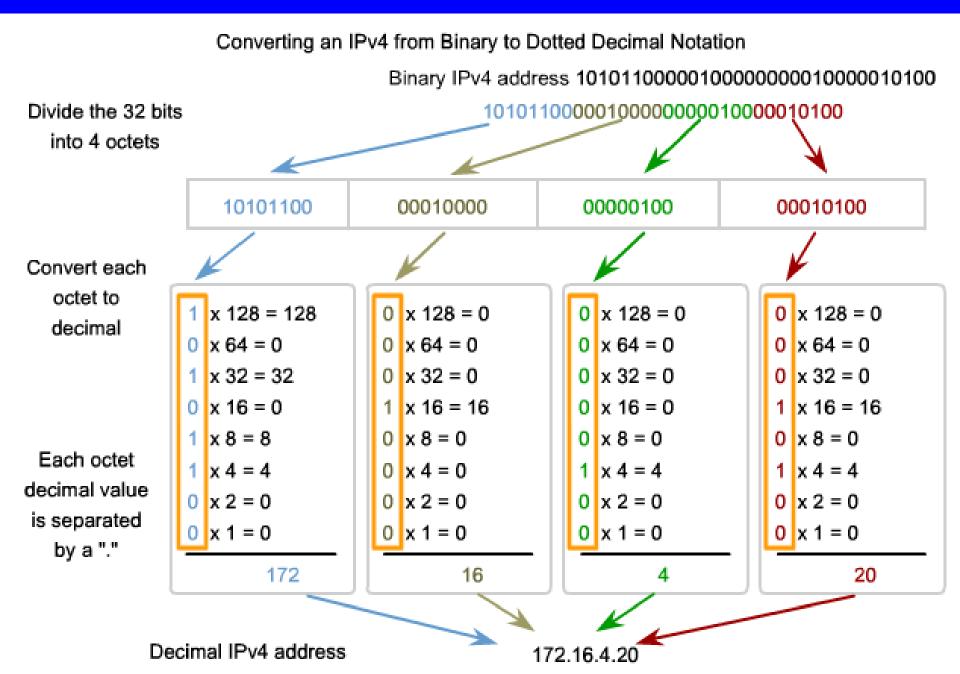
CH 6 ADDRESSING

6.0.1 INTRODUCTION


	d automatically if your network supports eed to ask your network administrator for matically	I see I have been assigned IP address
Use the following IP addre		192.168.1.5.
IP address:	192.168.1.5	Now other hosts
Subnet mask:		can find me.
Default gateway:		
C Obtain DNS server addres	s automatically	
- Use the following DNS ser		
Preferred DNS server:	· · · ·	
Alternate DNS server:	· · · ·	
	Advanced.	

IP version 4 (IPv4) is the current form of addressing used on the Internet.



The computer using this IP address is on network 192.168.10.0.

6.1.2 BINARY TO DECIMAL CONVERSION

6.1.2 BINARY TO DECIMAL CONVERSION

6.2.1 TYPES OF IPv4 ADDRESSES

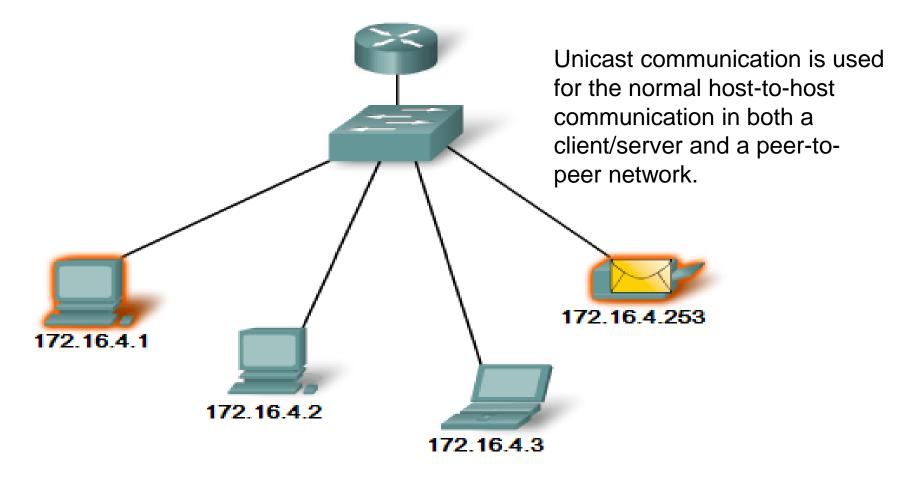
Address Types

	Network		Host
10	0	ο	о
00001010	0000000	0000000	00000000
10	ο	o	255
00001010	0000000	0000000	11111111
10	ο	o	ı
00001010	00000000	0000000	00000001
	1	0.0.0.1	10.0.253

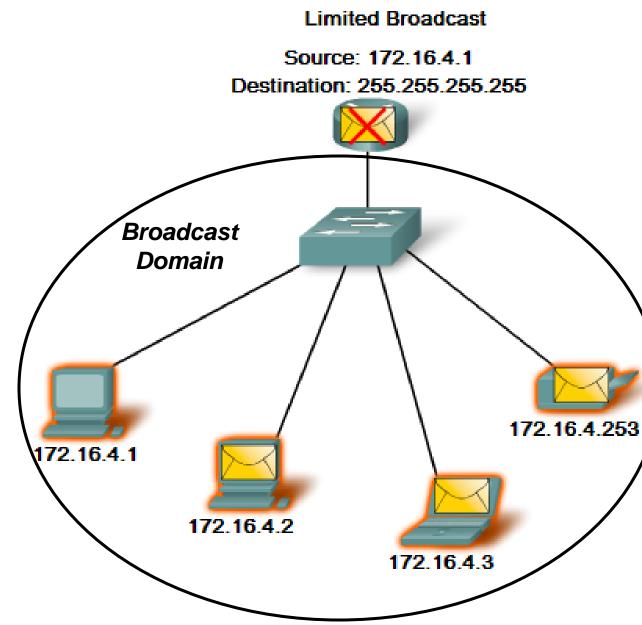
6.2.1 TYPES OF IPv4 ADDRESSES

Using Different Prefixes for the 172.16.4.0 Network

Network	Network address All Hosts Bits (Red) = 0	Host range Represents all combinations of host bits except where host bits are all zeros or all ones	Broadcast address All Host Bits (in Red) = 1
172.16.4.0 /24	172.16.4.0	172.16.4.1 - 172.16.4.254	172.16.4.255
172.16.4.0 /25	172.16.4.0	172.16.4.1 - 172.16.4.126	172.16.4.127
172.16.4.0 /26	172.16.4.0	172.16.4.1 - 172.16.4.62	172.16.4.63
172.16.4.0 /27	172.16.4.0	172.16.4.1 - 172.16.4.30 cfh	172.16.4.31
Binary Representation 27 Network Bits	10101100.00010000.00 000100.00000000	10101100.00010000.00000100.0000001 10101100.00010000.00000100.00000010 10101100.00010000.00000100.00000011	10101100.00010000.00000100.00011111
		10101100.00010000.00000100.00011110	
SAME NETWORK ALL PREFI			DIFFERENT BROADCAST ADDRESS EACH PREFIX
		30 Hos	its


DIFFERENT NUMBER OF HOSTS EACH PREFIX

Roll over the rows to see binary numbers for addresses and number of hosts.

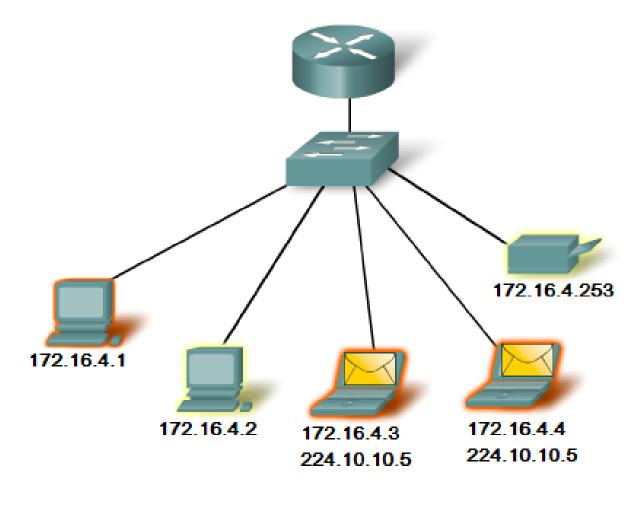

6.2.2 CALCULATING NETWORK, HOST AND BROADCAST

	For each row, enter the values for that type of address.				
	Type of Address	Enter LAST octet in binary	Enter LAST octet in decimal	Enter full address in decimal	
->	Network	0100000	64	188.23.29.64	
→	Broadcast	01001111	79	188.23.29.79	
->	First Usable Host Address	01000001	65	188.23.29.65	
↦	Last Usable Host Address	01001110	78	188.23.29.78	

Unicast Transmission Source: 172.16.4.1 Destination: 172.16.4.253

6.2.3 LIMITED BROADCAST

A directed broadcast is


sent to all hosts on a specific network. (useful for sending a broadcast to all hosts on a non-local network)

The **limited broadcast** is used for communication that is limited to the hosts on the local network.

6.2.3 Multicast Transmission

Multicast Transmission

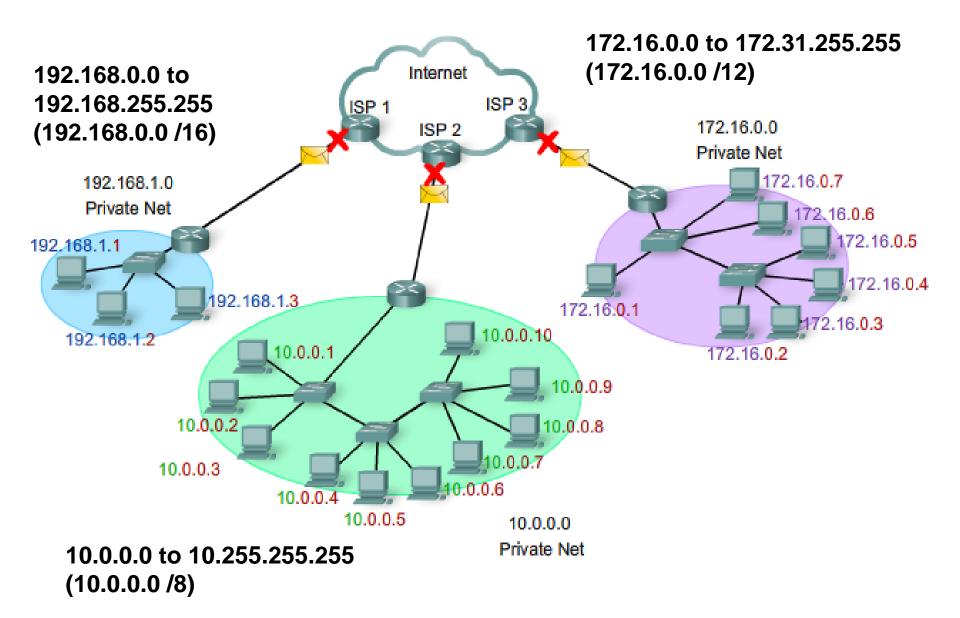
Source: 172.16.4.1

Multicast transmission is

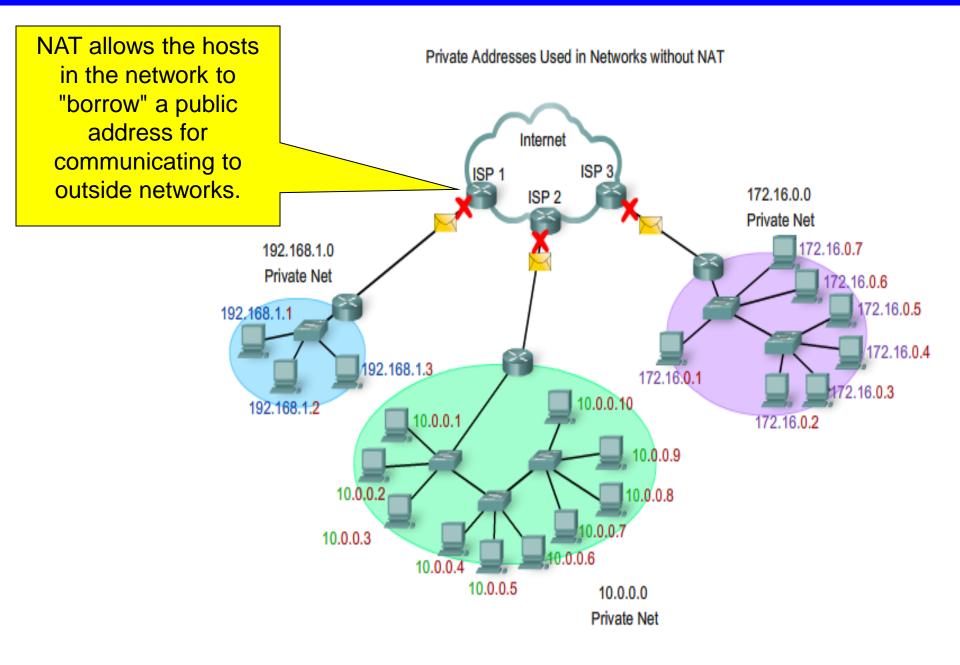
designed to conserve the bandwidth of the IPv4 network. It reduces traffic by allowing a host to send a single packet to a selected set of hosts.

The multicast clients use services initiated by a client program to subscribe to the multicast group.

Video and audio distribution Routing information exchange by routing protocols Distribution of software News feeds

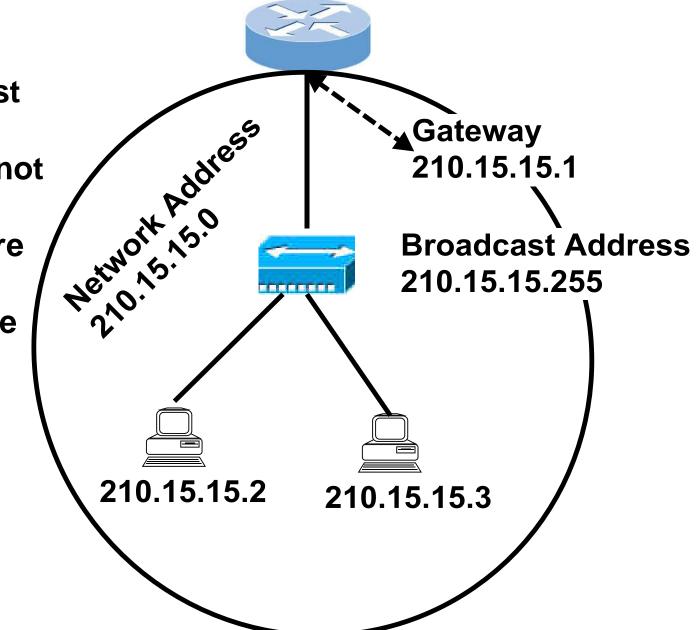

6.2.4 RESERVED IPv4 ADDRESS RANGES

Reserved IPv4 Address Ranges


Type of Address	Usage	Reserved IPv4 Address Range	RFC
Host Address	used for IPv4 hosts	0.0.0.0 to 223.255.255.255	790
Multicast Addresses	used for multicast groups on a local network	224.0.0.0 to 239.255.255.255	1700
Experimental Addresses	 used for research or experimentation cannot currently be used for hosts in IPv4 networks 	240.0.0.0 to 255.255.255.254	1700 3330

6.2.5 Public and Private Addresses

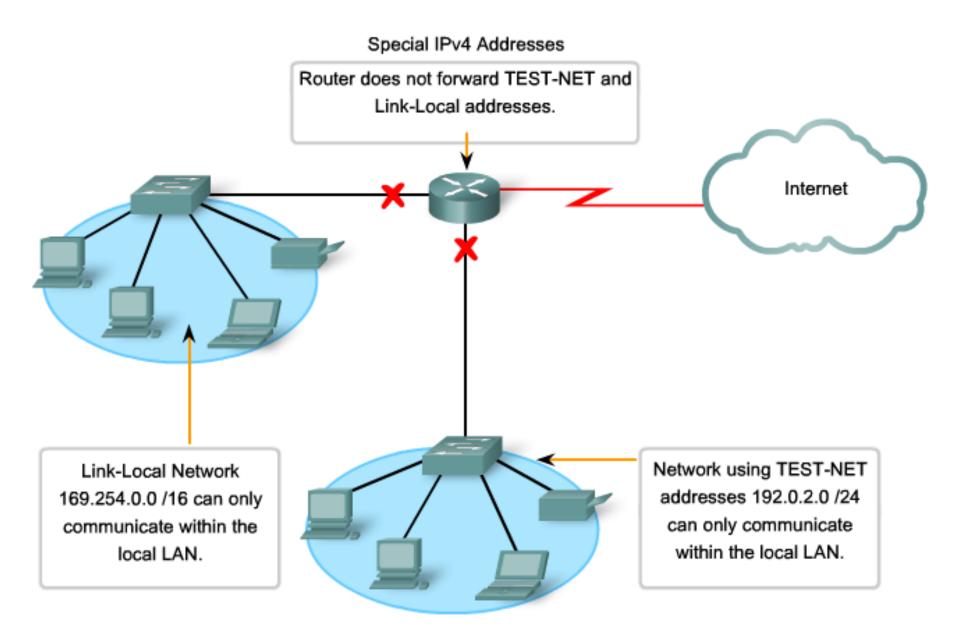
Private Addresses Used in Networks without NAT



6.2.5 Public and Private Addresses

6.2.6 Network Address and Broadcast Address

Within each network the first and last addresses cannot be assigned to hosts. These are the network address and the broadcast address, respectively.


Default Route

We represent the IPv4 default route as 0.0.0.0. The default route is used as a "catch all" route when a more specific route is not available. The use of this address also reserves all addresses in the 0.0.0.0 -0.255.255.255 (0.0.0.0 /8) address block.

Loopback

One such reserved address is the IPv4 loopback address 127.0.0.1. The loopback is a special address that hosts use to direct traffic to themselves. The loopback address creates a shortcut method for TCP/IP applications and services that run on the same device to communicate with one another. By using the loopback address instead of the assigned IPv4 host address, two services on the same host can bypass the lower layers of the TCP/IP stack. You can also ping the loopback address to test the configuration of TCP/IP on the local host.

6.2.6 Special IPv4 Addresses

6.2.7 Legacy IPv4 Addressing

Address Class	1st octet range (decimal)	1st octet bits (green bits do not change)	Network(N) and Host(H) parts of address	Default subnet mask (decimal and binary)	Number of possible networks and hosts per network
A	1-127**	0000000- 01111111	N.H.H.H	255.0.0.0	128 nets (2^7) 16,777,214 hosts per net (2^24-2)
В	128-191	1000000- 10111111	N.N.H.H	255.255.0.0	16,384 nets (2^14) 65,534 hosts per net (2^16-2)
С	192-223	11000000- 11011111	N.N.N.H	255.255.255.0	2,097,150 nets (2^21) 254 hosts per net (2^8-2)
D	224-239	11100000- 11101111	NA (multicast)		
E	240-255	11110000- 11111111	NA (experimental)		

** All zeros (0) and all ones (1) are invalid hosts addresses.

Providing and Controlling Access

Some hosts provide resources to the internal network as well as to the external network. One example of these devices is servers.

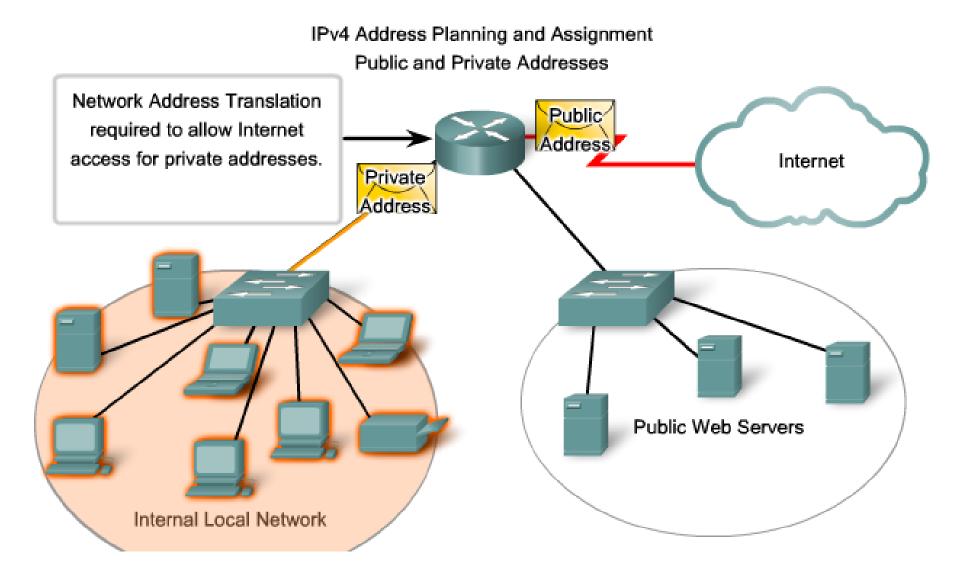
Addresses for these resources need to be planned and documented If a server has a random address assigned, blocking access to its address is difficult and clients may not be able to locate this resource.

Monitoring Security and Performance

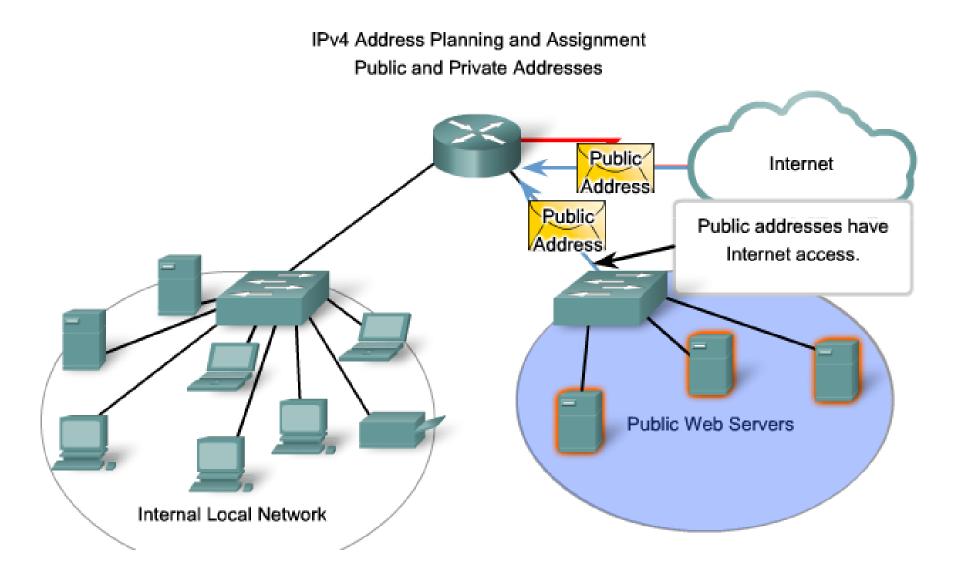
We need to monitor the security and performance of the network hosts and the network as a whole.

We examine network traffic looking for addresses that are generating or receiving excessive packets

Assigning Addresses within a Network


Hosts are associated with an IPv4 network by a common network portion of the address. Within a network, there are different types of hosts.

Some examples of different types of hosts are:


- End devices for users
- Servers and peripherals
- Hosts that are accessible from the Internet
- Intermediary devices

Each of these different device types should be allocated to a logical block of addresses within the address range of the network.

6.3.1 Planning Access to the Network

6.3.1 Planning Access to the Network

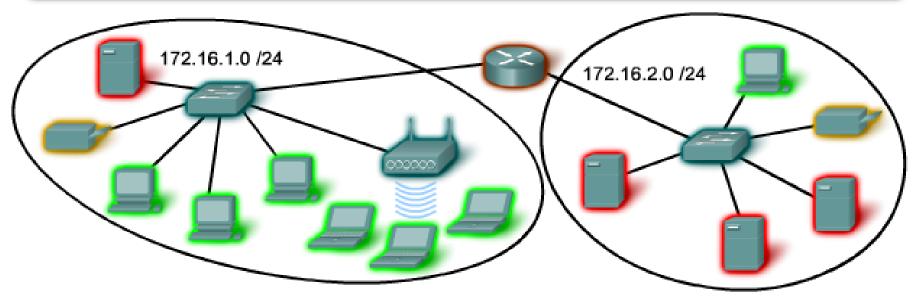
6.3.2 Static and Dynamic Addresses

Addressing End Devices

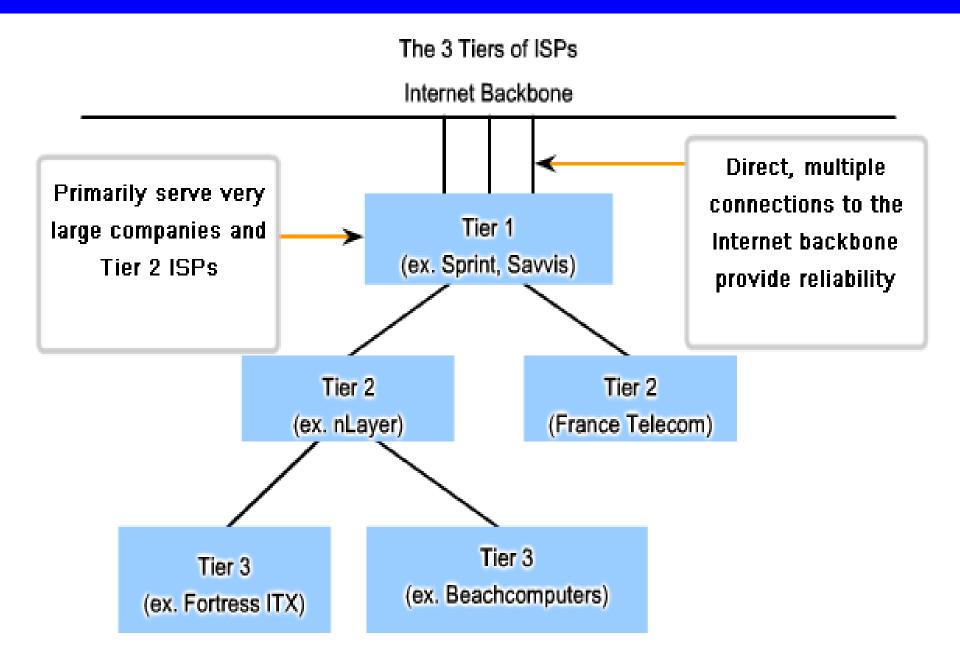
	Internet Protocol (TCP/IP) Prop
Local Area Connection Properties	오.× General
General	
Connect using:	You can get IP settings assigned this capability. Otherwise, you ne the appropriate IP settings.
Intel(R) PR0/100 VE Network Connection	
Conte	C Obtain an IP address auton
Components checked are used by this connection:	C Use the following IP addres
Client for Microsoft Networks	IP address:
File and Printer Sharing for Microsoft Networks	Subnet mask:
S Internet Protocol (TCP/IP)	Default gateway:
	C Obtain DNS server address C Use the following DNS server
	Preferred DNS server:
For manual static assignme	Alternate DNS server:
enter addres	
IP Addr	ess 🗲 🔰
Subnet m	ask 🚬
Default gate	way

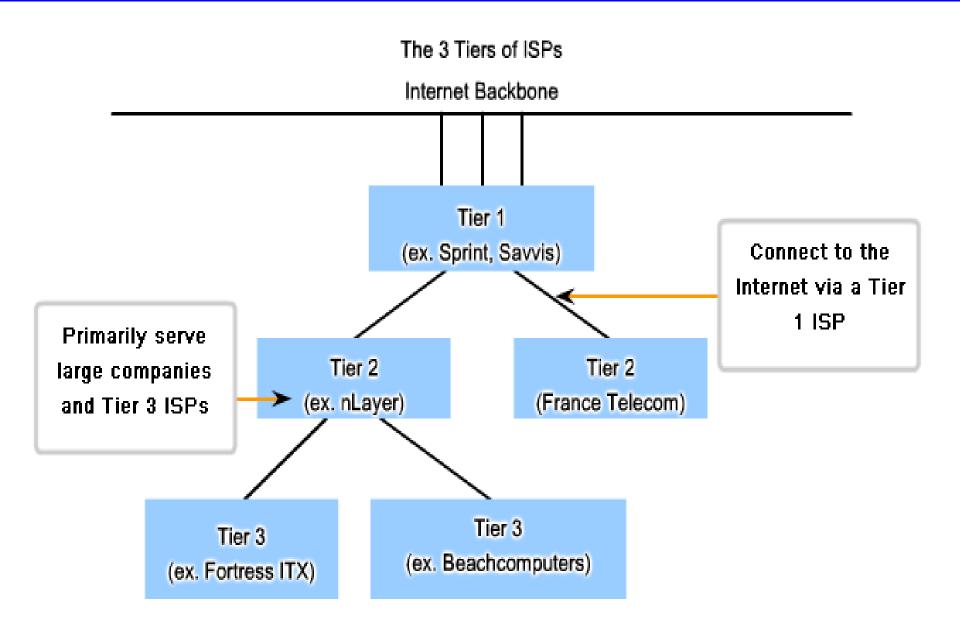
e appropriate IP settings.	eed to ask your network administrator for smatically
Use the following IP address	610.
IP address:	192.168.1.1
Subnet mask:	255 . 255 . 255 . 0
Default gateway:	192.168.1.99
 Obtain DNS server addre Use the following DNS se Preferred DNS server: 	

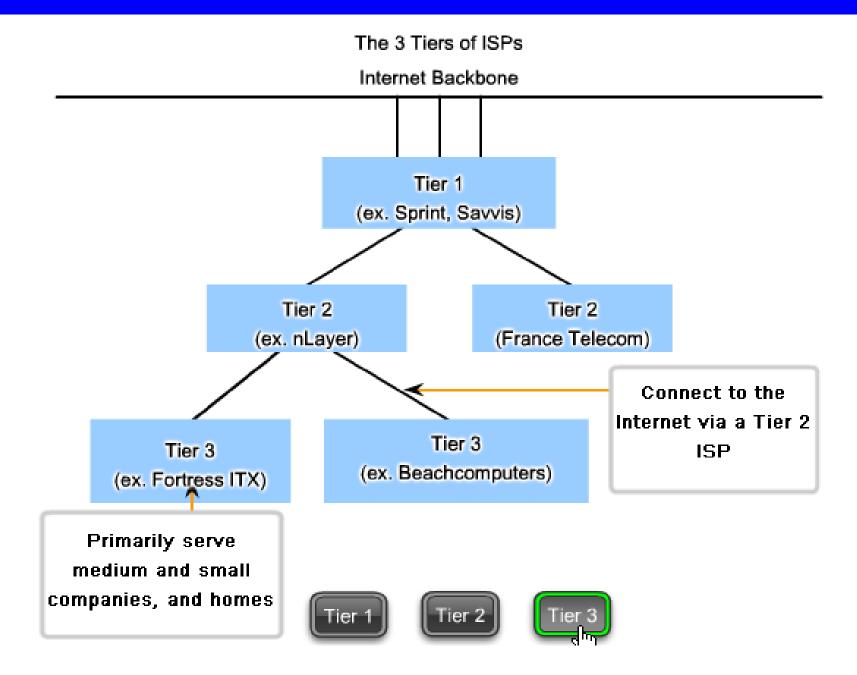
6.3.2 Static and Dynamic Addressing

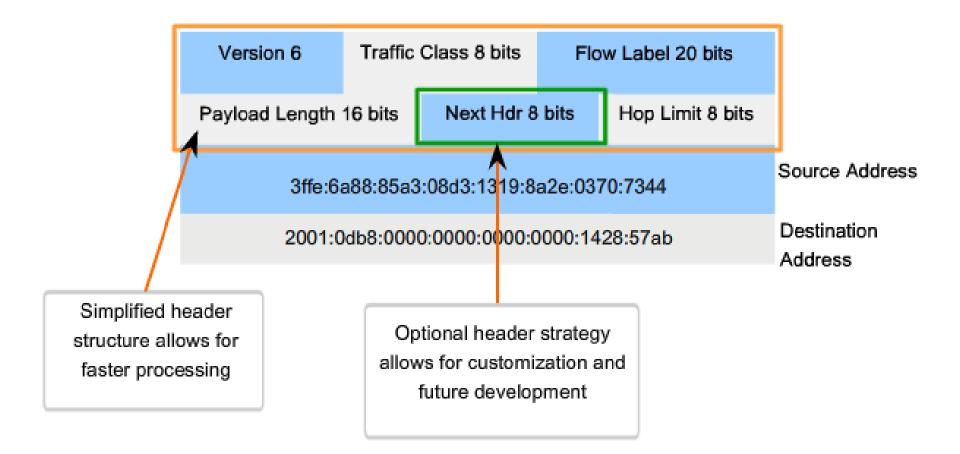

Assigning Dynamic Addresses

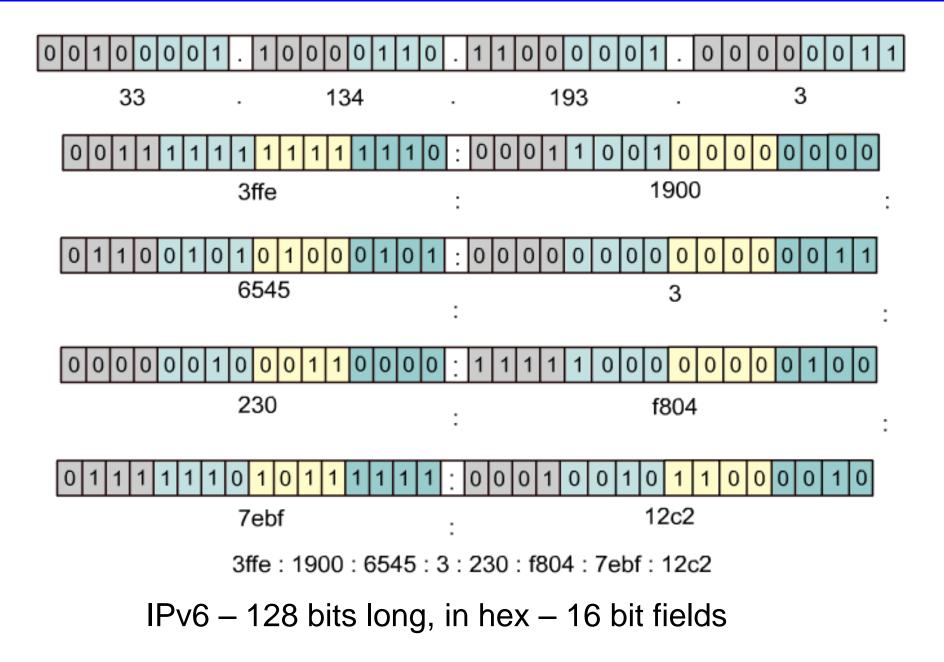
nternet Pro	otocol (TCP/IP) Properties	C:\WINDOWS\system32\cmd.exe
General Aa	ternate Configuration	SINC
this capabil the appropri-	et IP settings assigned automatically if your network sup ity. Otherwise, you need to ask your network administra iate IP settings. In an IP address automatical	
		Ethernet adapter Local Area Connection:
OUg	Using DHCP These addresses are assigned dynamically:	Connection-specific DNS Suffix .: Description
Delena	IP Address Subnet mask Default gateway DHCP server	Cancel


6.3.3 Assigning IP Addresses to other devices

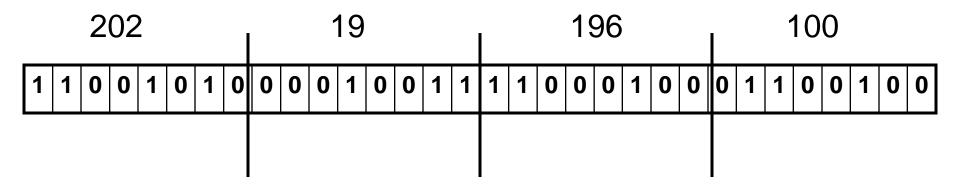

Devices IP Address Ranges


Use	First Address	Last Address	Summary Address
Network Address	172.16.x.0		170 10 - 0 /05
User hosts (DHCP pool)	172.16.x.1	172.16.x.127	172.16.x.0 /25
Servers	172.16.x.128	172.16.x.191	172.16.x.128 /26
Peripherals	172.16.x.192	172.16.x.223	172.16.x.192 /27
Networking devices	172.16.x.224	172.16.x.253	
Router (gateway)	172.16.x.254		172.16.x.224 /27
Broadcast	172.16.x.255		


6.3.5 ISP's



IPv6 Header

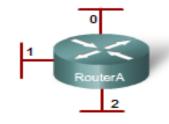


6.3.6 IPv6

Address 172.16.20.35 10101100.00010000.00010100.00100011

Subnet mask 255.255.255.224 1111111111111111111111111100000 or 172.16.20.35/27 **IP** Address

IP Address & Subnet Mask


202	19	196	100
1 1 0 0 1 0 1 0	0001011	1 1 0 0 0 1 0 0	0 1 1 0 0 1 0 0
255	255	255	0
1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1	0 0 0 0 0 0 0 0

IP Address & Subnet Mask used to extract Network Address

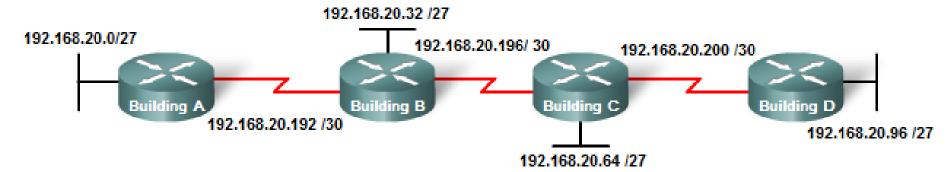
202	19	196	100
1 1 0 0 1 0 1 0	0001011	1 1 0 0 0 1 0 0	0 1 1 0 0 1 0 0
255	255	255	0
1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1	0 0 0 0 0 0 0 0
202	19	196	0
1 1 0 0 1 0 1 0	0001011	1 1 0 0 0 1 0 0	0 0 0 0 0 0 0 0

202	19	196	100
1 1 0 0 1 0 1 0	0001011	1 1 0 0 0 1 0 0	0 1 1 0 0 1 0 0
255	255	255	0
1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1	0 0 0 0 0 0 0 0
202	19	196	0
1 1 0 0 1 0 1 0	00011011	1 1 0 0 0 1 0 0	0 0 0 0 0 0 0 0

6.5.1 Basic Subnetting

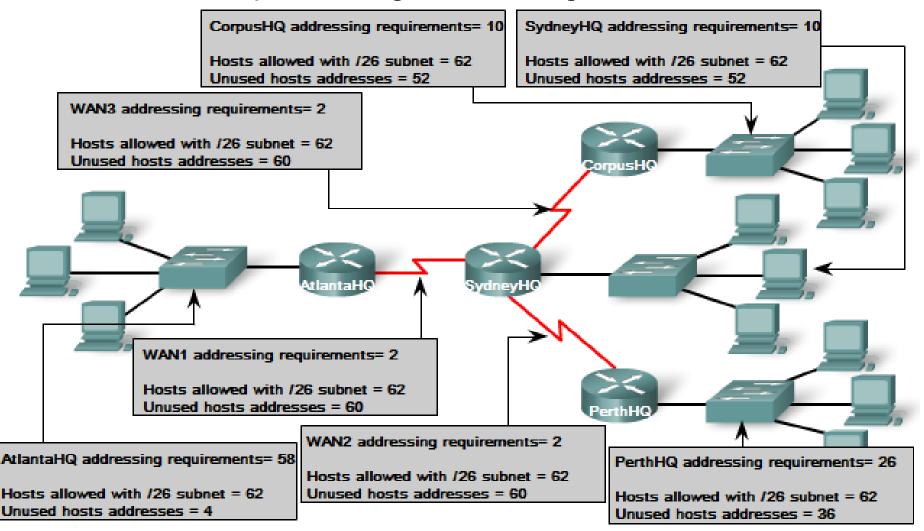
Borrowing Bits for Subnets

-	192.168.1.0 (/24) 255.255.255.0	Address: Mask:	11000000.10101000.00000001.00000000 11111111	
0	192.168.1.0 (/26) 255.255.255.192	Address: Mask:	11000000.10101000.00000001. <mark>00</mark> 000000 1111111.1111111.11111.11111.	
1	192.168.1.64 (/26) 255.255.255.192	Address: Mask:	11000000.10101000.00000001.01000000 11111111	
2	192.168.1.128 (/26) 255.255.255.192	Address: Mask:	11000000.10101000.00000001. <mark>10</mark> 000000 1111111.1111111.11111.11111.	
3	192.168.1.192 (/26) 255.255.255.192	Address: Mask:	11000000.10101000.00000001. <mark>11</mark> 000000 < 11111111.1111111.1111111.11	۱I
Two bits are borrowed to provide four subnets.				
Unu	sed address in this example.]
	in these positions in the mash network address.	k means that	these values are part of	


More subnets are available, but fewer addresses are available per subnet.

Subnet	Network address	Host range	Broadcast address
0	192.168.1.0/26	192.168.1.1 - 192.168.1.62	192.168.1.63
1	192.168.1.64/26	192.168.1.65 - 192.168.1.126	192.168.1.127
2	192.168.1.128/26	192.168.1.129 - 192.168.1.190	192.168.1.191
3	192,168.1.192/26	192.168.1.193 - 192.168.1.254	192.168.1.255

Addressing Scheme: Example of 4 networks


6.5.3 Subnetting a Subnet

Subnetting a Subnetwork Block

Subnet Number	Subnet Address	∎ r>	Subnet Number	Subnet Address
Subnet 0	192.168.20.0/27		Subnet 0	192.168.20.192/30
Subnet 1	192.168.20.32/27		Subnet 1	192.168.20.196/30
Subnet 2	192.168.20.64/27		Subnet 2	192.168.20.200/30
Subnet 3	192.168.20.96/27		Subnet 3	192.168.20.204/30
Subnet 4	192.168.20.128/27		Subnet 4	192.168.20.208/30
Subnet 5	192.168.20.160/27		Subnet 5	192.168.20.212/30
Subnet 6	192.168.20.192/27		Subnet 6	192.168.20.216/30
Subnet 7	192.168.20.224/27		Subnet 7	192.168.20.220/30

Network Requirements: Using standard subnetting would be inefficient.

	Actual Requirements	Total Wasted Addresses
AtlantaHQ	58 host addresses	4 addresses
PerthHQ	26 host addresses	36 addresses
SydneyHQ	10 host addresses	52 addresses
CorpusHQ	10 host addresses	52 addresses
WAN links	2 host addresses (each)	60 addresses

Name -required addresses	Subnet address	Address range	Broadcast Address	Network /prefix
AtlantaHQ - 58				
PerthHQ - 28				
SydneyHQ - 10	STEP 1			
CorpusHQ - 10	Sort the ne		ording to the	required
WAN1 - 2	host addre		mber of host	ts
WAN2 - 2	Largoot to			
WAN3 - 2				

On your documentation list your requirements in descending order.

ATLANTA ADDRESS 192.168.15.0/26 192.168.15.0 TO 63 NNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

Name -required addresses	Subnet address	Address range	Broadcast Address	Network/prefix
AtlantaHQ - 58	192.168.15.0	.162	.63	192.168.15.0 /26
PerthHQ - 28				
SydneyHQ - 10				
CorpusHQ - 10				
WAN1 - 2				
WAN2 - 2				
WAN3 - 2				

Calculate the subnet mask to meet largest requirement - AtlantaHQ

PERTH ADDRESS 192.168.15.64/27 192.168.15.64 TO 95

NNNNNNNNNNNNNNNNNNNNNNNNNNNN

Name-required addresses	Subnet address	Address range	Broadcast Address	Network/prefix
AtlantaHQ - 58	192.168.15.0	.162	.63	192.168.15.0 /26
PerthHQ - 28	192.168.15.64	.6594	.95	192.168.15.64 /27
SydneyHQ - 10				
CorpusHQ - 10				
WAN1 - 2				
WAN2 - 2				
WAN3 - 2				

Use the next available Address .64 to calculate a subnet mask for the next largest requirement - PerthHQ.

SYDNEY ADDRESS 192.168.15.96/28 192.168.15.96 TO 111

NNNNNNNNNNNNNNNNNNNNNNNNNNNNN

Name-required addresses	Subnet address	Address range	Broadcast Address	Network/prefix
AtlantaHQ - 58	192.168.15.0	.162	.63	192.168.15.0 /26
PerthHQ - 28	192.168.15.64	.6594	.95	192.168.15.64 /27
SydneyHQ - 10	192.168.15.96	.97110	.111	192.168.15.96 /28
CorpusHQ - 10				
WAN1 - 2				
WAN2 - 2				
WAN3 - 2				

Sydney needs 12 addresses. Use the next available address .96 to calculate a subnet for SydneyHQ requirement of 10 hosts.

CORPUS ADDRESS 192.168.15.112/28 192.168.15.112 TO 127 NNNNNNNNNNNNNNNNNNNNNNNNNNNNN

Name-required addresses	Subnet address	Address range	Broadcast Address	Network/prefix
AtlantaHQ - 58	192.168.15.0	.162	.63	192.168.15.0 /26
PerthHQ - 28	192.168.15.64	.6594	.95	192.168.15.64 /27
SydneyHQ - 10	192.168.15.96	.97110	.111	192.168.15.96 /28
CorpusHQ - 10	192.168.15.112	.113126	.127	192.168.15.112 /28
WAN1 - 2				
WAN2 - 2				
WAN3 - 2				

Use the next available address .112 to calculate a subnet for CorpusHQ which also requires 10 hosts.

WAN1 ADDRESS 192.168.15.128/30 192.168.15.128 TO 131 NNNNNNNNNNNNNNNNNNNNNNNNNNNNN

Name-required addresses	Subnet address	Address range	Broadcast Address	Network/prefix
AtlantaHQ - 58	192.168.15.0	.162	.63	192.168.15.0 /26
PerthHQ - 28	192.168.15.64	.6594	.95	192.168.15.64 /27
SydneyHQ - 10	192.168.15.96	.97110	.111	192.168.15.96 /28
CorpusHQ - 10	192.168.15.112	.113126	.127	192.168.15.112 /28
WAN1 - 2	192.168.15.128	.129130	.131	192.168.15.128 /30
WAN2 - 2				
WAN3 - 2				

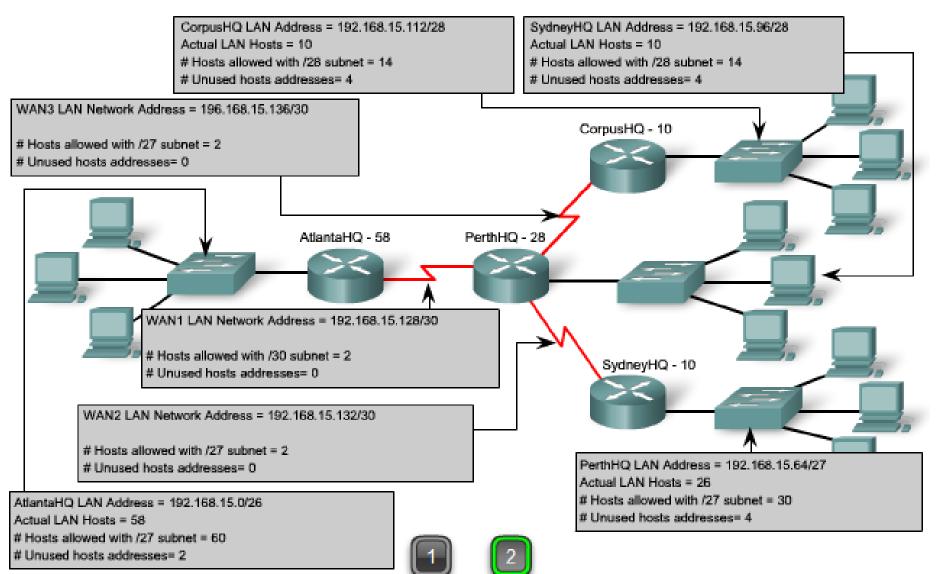
WAN links require 2 addresses each

WAN2 ADDRESS 192.168.15.132/30 192.168.15.132 TO 135 NNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

Name-required addresses	Subnet address	Address range	Broadcast Address	Network/prefix
AtlantaHQ - 58	192.168.15.0	.162	.63	192.168.15.0 /26
PerthHQ - 28	192.168.15.64	.6594	.95	192.168.15.64 /27
SydneyHQ - 10	192.168.15.96	.97110	.111	192.168.15.96 /28
CorpusHQ - 10	192.168.15.112	.113126	.127	192.168.15.112 /28
WAN1 - 2	192.168.15.128	.129130	.131	192.168.15.128 /30
WAN2 - 2	192.168.15.132	.133 - 134	.135	192.168.15.132 /30
WAN3 - 2				

WAN3 ADDRESS 192.168.15.136/30 192.168.15.136 TO 139 NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

Name-required addresses	Subnet address	Address range	Broadcast Address	Network/prefix
AtlantaHQ - 58	192.168.15.0	.162	.63	192.168.15.0 /26
PerthHQ - 28	192.168.15.64	.6594	.95	192.168.15.64 /27
SydneyHQ - 10	192.168.15.96	.97110	.111	192.168.15.96 /28
CorpusHQ - 10	192.168.15.112	.113126	.127	192.168.15.112 /28
WAN1 - 2	192.168.15.128	.129130	.131	192.168.15.128 /30
WAN2 - 2	192.168.15.132	.133 - 134	.135	192.168.15.132 /30
WAN3 - 2	192.168.15.136	.137138	.139	192.168.15.136 /30

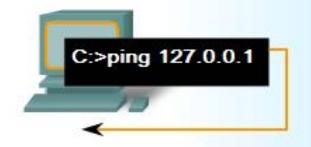

The networking problem is solved

Network Requirements Using VLSM is more efficient.

Name -required addresses	Subnet address	Address range	Broadcast Address	Network /prefix
AtlantaHQ - 58	192.168.15.0	.162	.63	192.168.15.0/26
PerthHQ - 28	192.168.15.64	.6594	.95	192.168.15.64/27
SydneyHQ - 10	192.168.15.96	.97110	.111	192.168.15.96/28
CorpusHQ - 10	192.168.15.112	.113126	.127	192.168.15.112/28
WAN1 - 2	192.168.15.128	.129130	.131	192.168.15.128/30
WAN2 - 2	192.168.15.132	.133134	.135	192.168.15.132/30
WAN3 - 2	192.168.15.136	.137138	.139	192.168.15.136/30

Network Requirements

Using VLSM is more efficient.

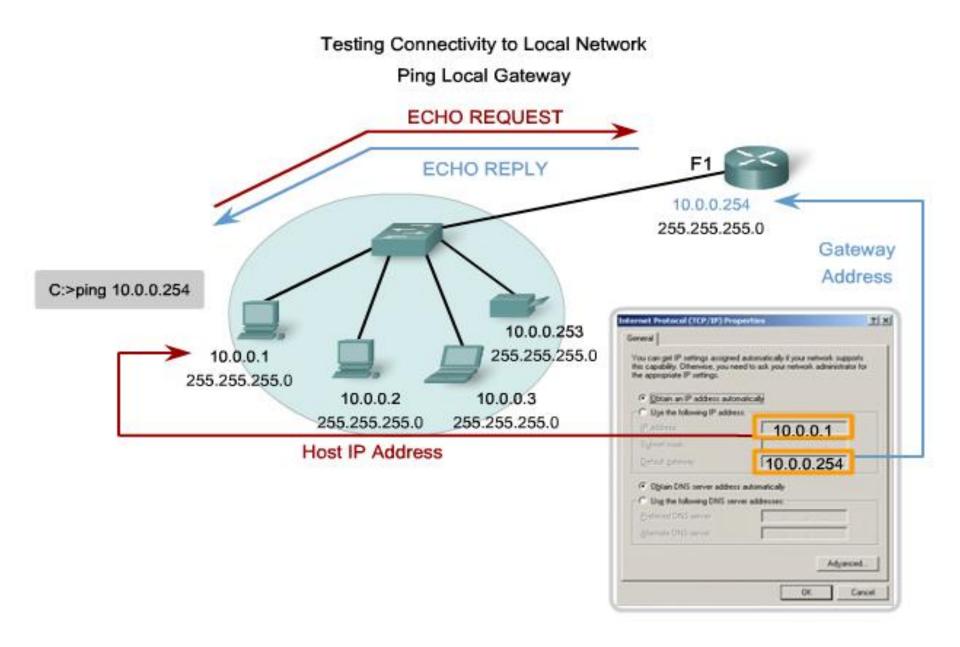

Using VLSM to allocate the addresses made it possible to apply the subnetting guidelines for grouping hosts based on:

- Grouping based on common geographic location
- Grouping hosts used for specific purposes
- Grouping based on ownership

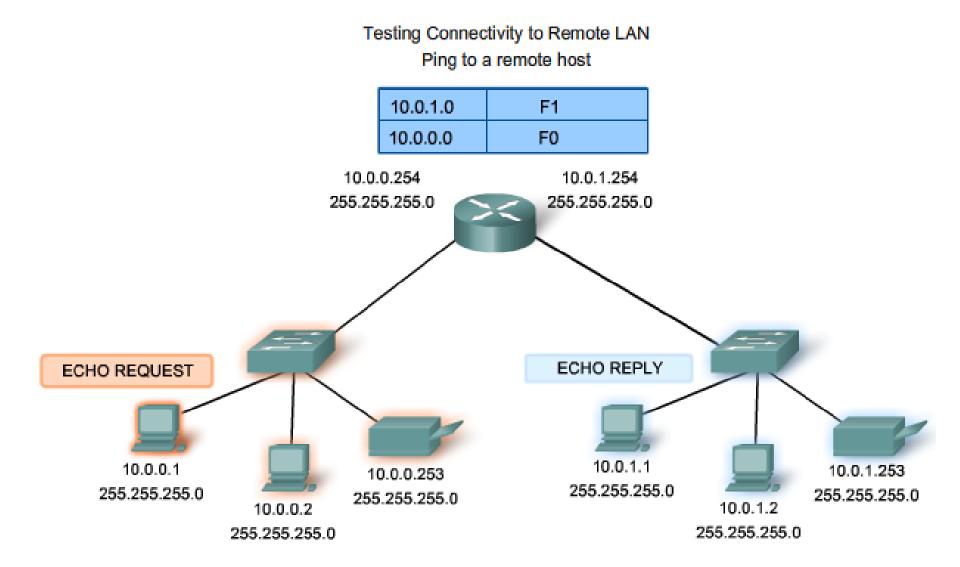
6.6.1 Ping

Testing Local TCP/IP Stack

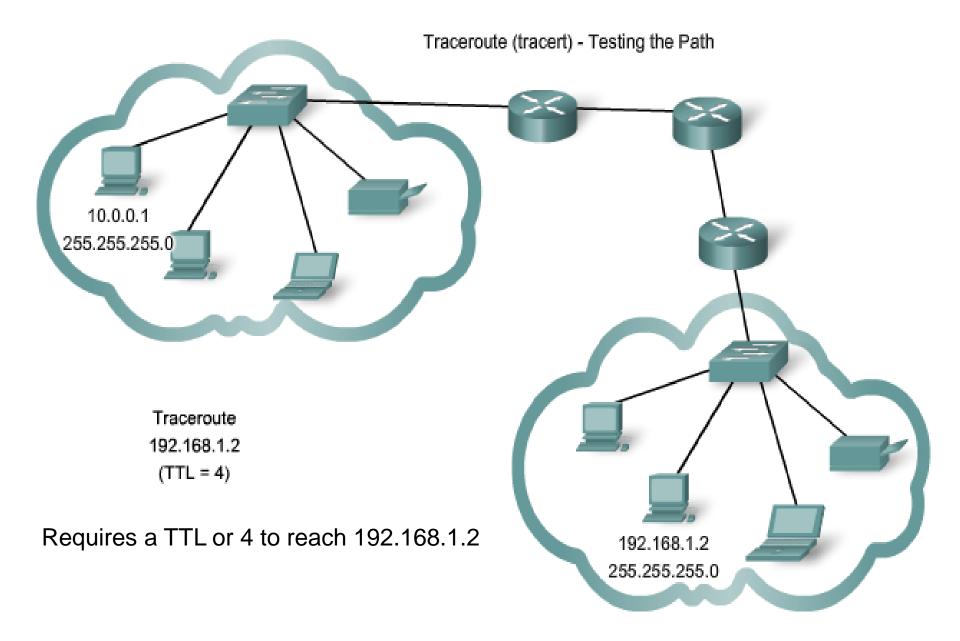
Pinging the local host confirms that TCP/IP is installed and working on the local host.

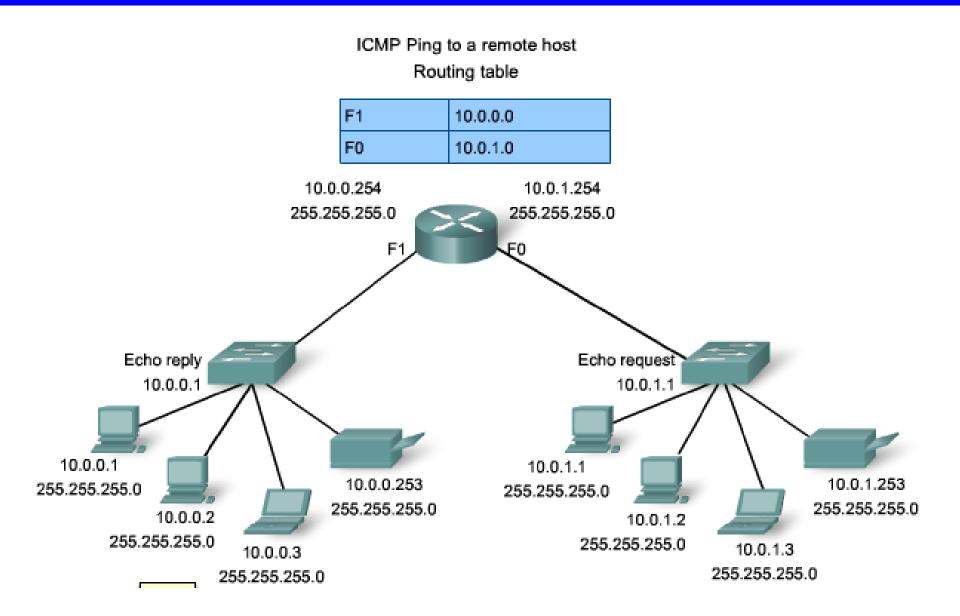

Pinging 127.0.0.1 causes a device to ping itself.

🚣 Local Area Co	onnection Properties	?
General Authentic	ation Advanced	
Connect using:		
Intel(R) PR	0/1000 PL Network Conn	Configure
This connection u	ses the following items:	
	tocol (IEEE 802.1x) v3.5.1.	Contraction of the second second
	covery Protocol Packet Dri Protocol (TCP/IP)	
•	£√	
Install	Uninstall	Properties
Description		
wide area netwo	ontrol Protocol/Internet Pro ork protocol that provides c nterconnected networks.	
Show icon in r	notification area when conn	ected
✓ Notify me when	n this connection has limite	d or no connectivity
)K Cancel


6.6.1 Ping

- A response from 127.0.0.1 indicates that IP is properly installed on the host.
- This response comes from the Network layer.
- This response is not an indication that the addresses, masks, or gateways are properly configured.
- Does not indicate anything about the status of the lower layer of the network stack.
- Simply tests IP down through the Network layer of the IP protocol.
- If we get an error message, it is an indication that TCP/IP is not operational on the host.


6.6.2 Pinging the Gateway



6.6.3 Pinging a remote host

6.6.4 Tracert (Testing the Path)

Summary

In this chapter, you learned to:

- Explain the structure IP addressing and demonstrate the ability to convert between 8bit binary and decimal numbers.
- Given an IPv4 address, classify by type and describe how it is used in the network.
- Explain how addresses are assigned to networks by ISPs and within networks by administrators.
- Determine the network portion of the host address and explain the role of the subnet mask in dividing networks.
- Given IPv4 addressing information and design criteria, calculate the appropriate addressing components.
- Use common testing utilities to verify and test network connectivity and operational status of the IP protocol stack on a host.