2.0.1 Chapter Introduction

In this chapter, you will learn to:

- Define the general role a router plays in networks.
- Describe the directly connected networks and the different router interfaces.
- Examine directly connected networks in the routing table and use the CDP protocol.
- Describe static routes with exit interfaces.
- Describe summary and default route.
- Examine how packets get forwarded when using static routes.
- Identify how to manage and troubleshoot static routes.

2.1.1 Role of the Router

The router is a special-purpose computer that plays a key role in the operation of any data network. Routers are primarily responsible for interconnecting networks by:

- Determining the best path to send packets
- Forwarding packets toward their destination

2.1.2 Introducing the Topology

172.16.3.0/24

192.168.2.0/24

Device	Interface	IP Address	Subnet Mask	Default Gateway
R1	Fa0/0	172.16.3.1	255.255.255.0	N/A
	S0/0/0	172.16.2.1	255.255.255.0	N/A
	Fa0/0	172.16.1.1	255.255.255.0	N/A
R2	S0/0/0	172.16.2.2	255.255.255.0	N/A
	S0/0/1	192.168.1.2	255.255.255.0	N/A
= 0	Fa0/0	192.168.2.1	255.255.255.0	N/A
R3	S0/0/1	192.168.1.1	255.255.255.0	N/A
PC1	NIC	172.16.3.10	255.255.255.0	172.16.3.1
PC2	NIC	172.16.1.10	255.255.255.0	172.16.1.1
PC3	NIC	192.168.2.10	255.255.255.0	192.168.2.1

2.1.3 Examining the Connections to the Router

Connections and Connectors

Router Connection

Packet Tracer Exploration: Build the Chapter Topology

Use the Packet Tracer Activity to build the topology that you will use for the rest of this chapter. You will add all the necessary devices and connect them with the correct cabling.

2.2.1 Router Configuration Review

172.16.3.0/24

192.168.2.0/24

Summary of interface status with show ip interface brief

InterfaceIP-AddressOK? Method StatusProtocolFastEthernet0/0unassignedYES manual administratively down downSerial0/0/0unassignedYES unset administratively down downFastEthernet0/1unassignedYES unset administratively down downSerial0/0/1unassignedYES unset administratively down down	Interface IP-Address OK? Method Status Protocol FastEthernet0/0 unassigned YES manual administratively down down Serial0/0/0 unassigned YES unset administratively down down FastEthernet0/1 unassigned YES unset administratively down down Serial0/0/1 unassigned YES unset administratively down down	R1#show ip interface h	orief			
FastEthernet0/0unassignedYES manual administratively down downSerial0/0/0unassignedYES unset administratively down downFastEthernet0/1unassignedYES unset administratively down downSerial0/0/1unassignedYES unset administratively down down	FastEthernet0/0unassignedYES manual administratively down downSerial0/0/0unassignedYES unset administratively down downFastEthernet0/1unassignedYES unset administratively down downSerial0/0/1unassignedYES unset administratively down down	Interface	IP-Address	OK? Method	Status	Protocol
Serial0/0/0unassignedYES unsetadministratively down downFastEthernet0/1unassignedYES unsetadministratively down downSerial0/0/1unassignedYES unsetadministratively down down	Serial0/0/0 unassigned YES unset administratively down down FastEthernet0/1 unassigned YES unset administratively down down Serial0/0/1 unassigned YES unset administratively down down	FastEthernet0/0	unassigned	YES manual	administratively	down down
FastEthernet0/1 unassigned YES unset administratively down down Serial0/0/1 unassigned YES unset administratively down down	FastEthernet0/1 unassigned YES unset administratively down down Serial0/0/1 unassigned YES unset administratively down down	Serial0/0/0	unassigned	YES unset	administratively	down down
Serial0/0/1 unassigned YES unset administratively down down	Serial0/0/1 unassigned YES unset administratively down down	FastEthernet0/1	unassigned	YES unset	administratively	down down
		Serial0/0/1	unassigned	YES unset	administratively	down down
		show ip	show	show ip i	nterface	show running
show ip show show ip interface show running	show ip show show ip interface show running	route	interfaces	bri	ef	config

By default, all router interfaces are shutdown, or turned off. To enable this interface, use the no shutdown command, which changes the interface from administratively down to up.

R1(config)#interface fastethernet 0/0 R1(config-if)#ip address 172.16.3.1 255.255.255.0 R1(config-if)#no shutdown

The following message is returned from the IOS:

*Mar 1 01:16:08.212: %LINK-3-UPDOWN: Interface FastEthernet0/0, changed state to up *Mar 1 01:16:09.214: %LINEPROTO-5-UPDOWN: Line protocol on Interface FastEthernet0/0, changed state to up

2.2.2 Configuring an Ethernet Interface (Unsolicited Messages)

R1(config)#int fa0/0 R1(config-if) #ip address 172.16.3.1 255.255.255.0 R1(config-if) #no shutdown R1(config-if) #descri *Mar 1 01:16:08.212: %LINK-3-UPDOWN: Interface FastEthernet0/0, changed state to up *Mar 1 01:16:09.214: %LINEPROTO-5-UPDOWN: Line protocol on Interface FastEthernet0/0, changed state to upption R1(config-if)# Add the "logging synchronous" command stop unsolicited messages. The description command was interrupted by unsolicited me R1(config)#line console 0 R1(config-line) **#logging synchronous** R1 (config-if) #description *Mar 1 01:28:04.242: %LINK-3-UPDOWN: Interface FastEthernet0/0, changed state to up *Mar 1 01:28:05.243: %LINEPROTO-5-UPDOWN: Line protocol on Interface FastEthernet0/0, changed state to up R1(config-if) #description

Keyboard input copied after message

2.2.2 Configuring Ethernet Interface

172.16.3.0/24

192.168.2.0/24

C 172.16.3.0 is directly connected, FastEthernet0/0 The /24 subnet mask for this route is displayed in the line above the actual route. 172.16.0.0/24 is subnetted, 1 subnets C 172.16.3.0 is directly connected, FastEthernet0/0

2.2.2 Configuring Ethernet Interface

Directly Connected Route

R1#show ip route	
Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP	
D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area	
N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2	
E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP	
i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area	
* - candidate default, U - per-user static route, o - ODR	
P - periodic downloaded static route	
Gateway of last resort is not set	
172.16.0.0/24 is subnetted, 1 subnets	
C 172.16.3.0 is directly connected, FastEthernet0/0	
R1#	

R1 now has a connected network.

2.2.3 Verifying Ethernet Interfaces

172.16.3.0/24

192.168.2.0/24

2.2.3 Verifying Ethernet Interfaces

Packet Tracer Exploration:

Configure Ethernet Interfaces for IP on Hosts and Routers

Use the Packet Tracer Activity to practice configuring Ethernet interfaces. Follow the additional instructions provided in the activity to examine the ARP process in simulation mode.

2.2.4 Configuring a Serial Interface

R1(config)#interface serial 0/0/0 R1(config-if)#ip address 172.16.2.1 255.255.255.0 R1(config-if)#no shutdown

R1#show interfaces serial 0/0/0

Serial0/0/0 is administratively down, line protocol is down

Line will remain down until other end of serial line is programmed.

2.2.5 Examining Router Interfaces

CSU/DSU connection using a DTE cable

	R1#show controllers serial 0/0/0
	Interface Serial0/0/0
	Hardware is PowerQUICC MPC860
	DCE V.35, no clock
	R1#
-	
	R1 has a DCE cable connected. But no clock rate is set.

R1(config)#interface serial 0/0/0 R1(config-if)#clock rate 64000 01:10:28: %LINEPROTO-5-UPDOWN: Line protocol on Interface Serial0/0/0, changed state to up

2.2.5 Examining Router Interfaces

Reg 1 = 1 0 / 0 / 0 / 0 = 1 = 1						
Serial0/0/0 is up, 1	line protocol is u	р				
Hardware is Power(QUICC Serial					
Internet address i	is 172.16.2.1/24					
(**output omitted**))					
R1#show ip interface	a brief					
R1 #show ip interface Interface	e brief IP-Address	OK?	Method	Status	Protocol	
R1# show ip interface Interface FastEthernet0/0	e brief IP-Address 172.16.3.1	OK? YES	Method manual	Status up	Protocol up	
R1 #show ip interface Interface FastEthernet0/0 Serial0/0/0	e brief IP-Address 172.16.3.1 172.16.2.1	OK? YES YES	Method manual manual	Status up up	Protocol up up	

2.3.1 Verifying Changes to the Routing Table

2.3.1 Verifying changes to the routing table

```
R2#debug ip routing
IP routing debugging is on
R2(config)#int fa0/0
R2(config-if)#ip address 172.16.1.1 255.255.255.0
R2(config-if)#no shutdown
%LINK-3-UPDOWN: Interface FastEthernet0/0, changed state to up
%LINEPROTO-5-UPDOWN: Line protocol on Interface FastEthernet0/0, changed state to up
RT: add 172.16.1.0/24 via 0.0.0.0, connected metric [0/0]
RT: interface FastEthernet0/0 added to routing table
```

 R2#undebug all

 All possible debugging has been turned off

 !

 R2#undebug ip routing

 IP routing debugging is off

 R2#

 Debug commands can be used

 to monitor router operations in real time.

2.3.1 Verifying changes to the routing table

R2(config)#interface fastethernet 0/0 R2(config-if)#ip address 172.16.1.1 255.255.255.0 R2(config-if)#no shutdown

The following message will be returned from the IOS:

02:35:30: %LINK-3-UPDOWN: Interface FastEthernet0/0, changed state to up 02:35:31: %LINEPROTO-5-UPDOWN: Line protocol on Interface FastEthernet0/0, changed state to up

2.3.1 Verifying changes to the routing table

Packet Tracer Exploration:

Configure Serial Interfaces and Verify the Routing Table

Use the Packet Tracer Activity to practice configuring Serial interfaces. You will also use debug ip routing to observe the routing table processes.

R1#show ip interface brief				4	
Interface	IP-Address	OK? Method	Status	Protocol	٦
FastEthernet0/0	172.16.3.1	YES manual	up	up	
Serial0/0/0	172.16.2.1	YES manual	up	up	J
FastEthernet0/1	unassigned	YES manual	administratively down	down	,
Serial0/0/1	unassigned	YES manual	administratively down	down	4
R1#					"

2.3.2 Devices on Directly Connected Networks

2.3.2 Devices on Directly Connected Networks

Packet Tracer Exploration: Verify Connectivity of Directly Connected Devices

Use the Packet Tracer Activity to test connectivity between directly connected devices.

Network discovery with CDP

- CDP is an information-gathering tool used by network administrators to get information about directly connected Cisco devices.
- CDP is a proprietary tool that enables you to access a summary of protocol and address information about Cisco devices that are directly connected.
- By default, each Cisco device sends periodic messages, which are known as CDP advertisements, to directly connected Cisco devices.
- These advertisements contain information such as the types of devices that are connected, the router interfaces they are connected to, the interfaces used to make the connections, and the model numbers of the devices.

2.3.3 Cisco Discovery Protocol

Layer 3 Neighbors

At Layer 3, routing protocols consider neighbors to be devices that share the same network address space.

Layer 2 Neighbors

CDP neighbors are Cisco devices that are directly connected physically and share the same data linkS3 will receive CDP advertisements from S1, S2, and R2 only.

2.3.3 Cisco Discovery Protocol

R1 and S1 are CDP neighbors.R1 and R2 are CDP neighbors.R2 and S2 are CDP neighbors.R2 and R3 are CDP neighbors.R3 and S3 are CDP neighbors.

172.16.3.0/24

192.168.2.0/24

```
R3#show cdp neighbors
Capability Codes: R - Router, T - Trans Bridge, B - Source Route Bridge
                S - Switch, H - Host, I - IGMP, r - Repeater, P - Phone
Device ID Local Intrfce Holdtme Capability Platform Port ID
                                          S I WS-C2950 Fas 0/6
S3
              Fas 0/0 151
R2
              Ser 0/0/1 125 R 1841 Ser 0/0/1
R3#show cdp neighbors detail
Device ID: R2
Entry address(es):
 IP address : 192.168.1.2
Platform: Cisco 1841, Capabilities: Router Switch IGMP
Interface: Serial0/0/1, Port ID (outgoing port): Serial0/0/1
Holdtime : 161 sec
Version :
```

CDP provides the following information about each CDP neighbor device:

- Device identifiers For example, the configured host name of a switch
- Address list Up to one Network layer address for each protocol supported
- Port identifier The name of the local and remote port-in the form of an ASCII character string such as ethernet0
- Capabilities list For example, whether this device is a router or a switch
- Platform The hardware platform of the device; for example, a Cisco 7200 series router

2.3.3 Cisco Discovery Protocol

Packet Tracer Exploration: Cisco Discovery Protocol (CDP)

Use the Packet Tracer Activity to explore the features of the Cisco Discovery Protocol (CDP). Practice enabling and disabling CDP - globally and on a per-interface basis. Investigate the power of using CDP to discover the topology of a network.

R3#show cdp nei	ghbors				
Capability Code	s: R - Router, T -	Trans Brid	ge, B - Sourc	e Route Bridge	
	S - Switch, H -	Host, I -	IGMP, r - Rep	eater, P - Phone	
Device ID	Local Intrfce	Holdtme	Capability	Platform Port ID	
Switch	Fas 0/0	133	SI	WS-C2950-2Fas 0/11	
R2	Ser 0/0/	149	RSI	Cisco 1841Ser 0/0/1	

```
R3#show cdp neighbors detail
Device ID: R2
Entry address(es):
  IP address: 192.168.1.2
Platform: Cisco 1841, Capabilities: Router Switch IGMP
Interface: Serial0/0/1, Port ID (outgoing port): Serial0/0/1
Holdtime : 161 sec

Neighbor device ID
Local interface
Holdtime value, in seconds
Neighbor device
```

```
!To disable CDP globally use...
R3(config) #no cdp run
!
!or, to disable CDP on only an interface...
R3(config-if) #no cdp enable
```

- capability codeNeighbor hardware platform
- Neighbor remote port ID

2.3.4 Using CDP for Network Discovery

Packet Tracer Exploration: Mapping a Network with CDP and Telnet

CDP show commands can be used to discover information about unknown devices in a network. CDP show commands display information about directly connected Cisco devices, including an IP address that can be used to reach the device. You can then telnet to the device and repeat the process until the entire network is mapped.

Use the Packet Tracer Activity to discover and map an unknown network using CDP and Telnet.

2.4.1 The Purpose and Command Syntax of IP Route

The command for configuring a static route is ip route.

Router(config) # ip route network-address subnet-mask
{ip-address | exit-interface }

Parameter	Description
network-address	Destination network address of the remote network to be added to the routing table.
subnet-mask	Subnet mask of the remote network to be added to the routing table. The subnet mask can be modified to summarize a group of networks.
ip-address	Commonly referred to as the next-hop router's IP address.
exit-interface	Outgoing interface that is used to forward packets to the destination network.

2.4.2 Configuring Static Routes

The remote networks that R1 does not know about are: 172.16.1.0/124 - The LAN on R2 192.168.1.0/24 - The serial network between R2 and R3 192.168.2.0/24 - The LAN on R3

2.4.2 Configuring Static Routes

```
R1#debug ip routing
(**output omitted**)
R1#conf t
R1(config) #ip route 172.16.1.0 255.255.255.0 172.16.2.2
00:20:15: RT: add 172.16.1.0/24 via 172.16.2.2, static metric [1/0]
R1#show ip route
Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
       N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
       E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
       i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area
       * - candidate default, U - per-user static route, o - ODR
       P - periodic downloaded static route
Gateway of last resort is not set
     172.16.0.0/24 is subnetted, 3 subnets
IS
        172.16.1.0 [1/0] via 172.16.2.2
C
C
        172.16.2.0 is directly connected, Serial0/0/0
        172.16.3.0 is directly connected, FastEthernet0/0
R1#
```

ip route - Static route command 172.16.1.0 - Network address of remote network 255.255.255.0 - Subnet mask of remote network 172.16.2.2 - Serial 0/0/0 interface IP address on R2, which is the "next-hop" to this network

2.4.2 Configuring Static Routes

```
Configuring
                                                            remaining R1 static
R1(config) #ip route 192.168.1.0 255.255.255.0 172.16.2.2
R1(config) #ip route 192.168.2.0 255.255.255.0 172.16.2.2
                                                             routes
R1 (config) #end
R1#show ip route
Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
      N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
      E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
       i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area
       * - candidate default, U - per-user static route, o - ODR
       P - periodic downloaded static route
Gateway of last resort is not set
    172.16.0.0/24 is subnetted, 3 subnets
       172.16.1.0 [1/0] via 172.16.2.2
S
С
       172.16.2.0 is directly connected, Serial0/0/0
С
       172.16.3.0 is directly connected, FastEthernet0/0
S
     192.168.1.0/24 [1/0] via 172.16.2.2
S
     192.168.2.0/24 [1/0] via 172.16.2.2
```

All three static routes configured on R1 have the same nexthop IP address: 172.16.2.2. Using the topology diagram as a reference, we can see that this is true because packets for all of the remote networks must be forwarded to router R2, the next-hop router.
Alex Zinin's Routing Principles

Principle 1:

"Every router makes its decision alone, based on the information it has in its own routing table."

Principle 2:

"The fact that one router has certain information in its routing table does not mean that other routers have the same information."

Principle 3:

"Routing information about a path from one network to another does not provide routing information about the reverse, or return path."

Packets destined for 172.16.1.0/24 and 192.168.1.0/24 networks would reach their destination. This is because router R1 has a route to these networks through R2. When packets reach router R2, these networks are <u>directly connected on R2</u> and are routed using its routing table.

Packets destined for 192.168.2.0/24 network would not reach their destination. R1 has a static route to this network through R2. However, when R2 receives a packet, it will drop it because R2 does not yet contain a route for this network in its routing table.

If R2 or R3 receives a packet destined for 172.16.3.0/24, the packet will not reach its destination, because neither router has a route to the 172.16.3.0/24 network.

2.4.4 Resolving the Exit Interface (recursive lookup)

R1# (**	show ip route output omitted**)			
	172.16.0.0/24 is subnetted, 3 subnets			
S	172.16.1.0 [1/0] via 172.16.2.2			
С	172.16.2.0 is directly connected, Serial0/0/0			
С	C 172.16.3.0 is directly connected, FastEthernet0/0			
S	192.168.1.0/24 [1/0] via 172.16.2.2			
S	192.168.2.0/24 [1/0] via 172.16.2.2	When the router has		
	172.16.2.2, is matched to the directly connected network 172.16.2.0/24 with the exit	lookups in the routing table before		
	interface of Serial 0/0/0	is performing a packet, it process known as a		

Step 1: Find a route. Step 2: Find an exit interface.

Before any packet is forwarded by a router, the routing table process must determine the exit interface to use to forward the packet. This is known as route **resolvability**

recursive lookup

2.4.4 Resolving the Exit Interface

R1#debug ip routing	
IP routing debugging is on	
R1#config t	:
Enter configuration commands, one per line. End with CNTL,	′Ζ.
R1(config)#int s0/0/0	
R1(config-if)#shutdown	
R1(config-if)#end	l r

```
is_up: 0 state: 6 sub state: 1 line: 0
RT: interface Serial0/0/0 removed from routing table
RT: del 172.16.2.0/24 via 0.0.0.0, connected metric [0/0]
RT: delete subnet route to 172.16.2.0/24
RT: del 192.168.1.0 via 172.16.2.2, static metric [1/0]
RT: delete network route to 192.168.1.0
RT: del 172.16.1.0/24 via 172.16.2.2, static metric [1/0]
RT: delete subnet route to 172.16.1.0/24
```

R1#**show ip route** ***output omitted***

If Serial 0/0/0 nterface goes down the static oute cannot be resolved to an exit interface, in this case Serial 0/0/0, the static route is removed from the routing table.

Four routes are removed.

Only one route is left in the table

The static routes are still in the R1's running configuration. If the interface comes back up (is enabled again with no shutdown), the IOS routing table process will reinstall these static routes back into the routing table.

2.5.1 Configuring a Static Route with an Exit Interface

Router(config) #ip route network-address subnet-mask
{ip-address | exit-interface }

Parameter	Description
network-address	Destination network address of the remote network to be added to the routing table.
subnet-mask	Subnet mask of the remote network to be added to the routing table. The subnet mask can be modified to summarize a group of networks.
ip-address	Commonly referred to as the next-hop router's IP address.
exit-interface	Outgoing interface that is used to forward packets to the destination network.

Most static routes can be configured with an exit interface, which allows the routing table to resolve the exit interface in a single search instead of two searches.

2.5.1 Configuring a Static Route with an Exit Interface

```
R1(config) #no ip route 192.168.2.0 255.255.255.0 172.16.2.2
R1(config) #ip route 192.168.2.0 255.255.255.0 serial 0/0/0
R1 (config) #end
R1#show ip route
Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
      D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
      N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
      E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
      i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area
       * - candidate default, U - per-user static route, o - ODR
       P - periodic downloaded static route
Gateway of last resort is not set
    172.16.0.0/24 is subnetted, 3 subnets
       172.16.1.0 [1/0] via 172.16.2.2
S
С
       172.16.2.0 is directly connected, Serial0/0/0
С
       172.16.3.0 is directly connected, FastEthernet0/0
S
    192.168.1.0/24 [1/0] via 172.16.2.2
    192.168.2.0/24 is directly connected, Serial0/0/0
S
```

Exit interface now specified in the static route. No need for a recursive lookup.

Reconfigure this static route to use an exit interface instead of a next-hop IP address

2.5.2 Modifying Static Routes

R1(config) #no ip route 172.16.1.0 255.255.255.0 172.16.2.2 R1(config) #ip route 172.16.1.0 255.255.255.0 serial 0/0/0 R1(config) #no ip route 192.168.1.0 255.255.255.0 172.16.2.2 R1(config) #ip route 192.168.1.0 255.255.255.0 serial 0/0/0

R2 (config) #no ip route 172.16.3.0 255.255.255.0 172.16.2.1 R2 (config) #ip route 172.16.3.0 255.255.255.0 serial 0/0/0 R2 (config) #no ip route 192.168.2.0 255.255.255.0 192.168.1.1 R2 (config) #ip route 192.168.2.0 255.255.255.0 serial 0/0/1

```
R3 (config) #no ip route 172.16.1.0 255.255.255.0 192.168.1.2

R3 (config) #ip route 172.16.1.0 255.255.255.0 serial 0/0/1

R3 (config) #no ip route 172.16.2.0 255.255.255.0 192.168.1.2

R3 (config) #ip route 172.16.2.0 255.255.255.0 serial 0/0/1

R3 (config) #no ip route 172.16.3.0 255.255.255.0 192.168.1.2

R3 (config) #no ip route 172.16.3.0 255.255.255.0 serial 0/0/1
```

There are times when a previously configured static route needs to be modified There is no way to modify an existing static route. The static route must be deleted and a new one configured.

Using exit

ip address

interface rather

than next hop

R1#show running-config

ip route 172.16.1.0 255.255.255.0 Serial0/0/0
ip route 192.168.1.0 255.255.255.0 Serial0/0/0
ip route 192.168.2.0 255.255.255.0 Serial0/0/0

R2#show running-config

ip route 172.16.3.0 255.255.255.0 Serial0/0/0 ip route 192.168.2.0 255.255.255.0 Serial0/0/1

R3#show running-config

ip route 172.16.1.0 255.255.255.0 Serial0/0/1
ip route 172.16.2.0 255.255.255.0 Serial0/0/1
ip route 172.16.3.0 255.255.255.0 Serial0/0/1

Ξ

Ŧ

v

2.5.3 Verifying Static Route Configuration

Packet Tracer Exploration: Removing and Configuring Static Routes

Use the Packet Tracer Activity to practice removing static routes and reconfiguring static routes using the exit interface argument. Then verify the new configuration and test connectivity.

2.5.4 Static Routes with Ethernet Interfaces

Ethernet as an exit interfaces

Sometimes the exit interface is an Ethernet network. **R1(config)#ip route 192.168.2.0 255.255.255.0 172.16.2.2** IP packet must be encapsulated into an Ethernet frame with an Ethernet destination MAC address.

2.5.4 Static Routes with Ethernet Interfaces

R1(config) #ip route 192.168.2.0 255.255.255.0 FastEthernet 0/1 172.16.2.2

Exit interface and next-hop address

The routing table process will only need to perform a single lookup to get both the exit interface and the next-hop IP address.

2.6.1 Summary Static Routes

Multiple static routes can be summarized into a single static route if:

- The destination networks can be summarized into a single network address, and
- The multiple static routes all use the same exit-interface or next-hop IP addres

2.6.1 Summary Static Routes

The destination IP address only needs to match the left-most 22 bits of the 172.16.0.0 network. Any packet with a destination IP address belonging to the 172.16.1.0/24, 172.16.2.0/24, or 172.16.3.0/24 network matches this summarized route.

Most Specific Match

It is possible that the destination IP address of a packet will match multiple routes in the routing table.

172.16.0.0/24 is subnetted, 3 subnets S 172.16.1.0 is directly connected, Serial0/0/0 and S 172.16.0.0/16 is directly connected, Serial0/0/1

A packet with the destination IP address 172.16.1.10. matches both routes.

The routing table lookup process will use the most-specific match. Because 24 bits match the 172.16.1.0/24 route, and only 16 bits of the 172.16.0.0/16 route match, the static route with the 24 bit match will be used. This is the longest match.

R1 is an ideal candidate to have all of its static routes replaced by a single default route. First, delete the three static routes:

Configuring a Default Static Route

The syntax for a default static route is similar to any other static route, except that the network address is 0.0.0.0 and the subnet mask is 0.0.0.0:

Router(config)#ip route 0.0.0.0 0.0.0.0 [exit-interface | ip-address]

The 0.0.0.0 0.0.0.0 network address and mask is called a "quad-zero" route.

First, delete the three static routes: R1(config)#no ip route 172.16.1.0 255.255.255.0 serial 0/0/0 R1(config)#no ip route 192.168.1.0 255.255.255.0 serial 0/0/0 R1(config)#no ip route 192.168.2.0 255.255.255.0 serial 0/0/0

Next, configure the single default static route using the same Serial 0/0/0 exit interface as the three previous static routes:

R1(config)#ip route 0.0.0.0 0.0.0.0 serial 0/0/0

2.6.2 Default Static Route

R1#show ip route	
output omitted	Defere Summerizing Deutee
Gateway of last resort is not set	Derore Summanzing Roules
172.16.0.0/24 is subnetted, 3 subnets	
S 172.16.1.0 is directly connected,	Serial0/0/0
C 172.16.2.0 is directly connected,	Serial0/0/0
C 172.16.3.0 is directly connected,	FastEthernet0/0
S 192.168.1.0/24 is directly connected,	Serial0/0/0
S 192.168.2.0/24 is directly connected,	Serial0/0/0
R1#	

```
R1#show ip route
    * - candidate default, U - per-user static route, o - ODR
    P - periodic downloaded static route
Gateway of last resort is 0.0.0.0 to network 0.0.0.0
    172.16.0.0/24 is subnetted, 2 subnets
C    172.16.2.0 is directly connected, Serial0/0/0
C    172.16.3.0 is directly connected, FastEthernet0/0
S*    0.0.0.0/0 is directly connected, Serial0/0/0
R1#
```

After Summarizing Routes

2.6.2 Default Static Route

Packet Tracer Exploration: Configuring a Default Route

Use the Packet Tracer Activity to practice configuring summary routes and default routes. Then verify the new configuration by testing for connectivity.

Follow the step by step 11 step sequence of events in the curriculum

172.16.3.0/24

Connectivity Troubleshooting Tools

- ping
- traceroute
- show ip route
- show ip interface brief
- show cdp neighbors detail

```
R2#show ip route
Gateway of last resort is not set
     172.16.0.0/24 is subnetted, 3 subnets
       172.16.1.0 is directly connected, FastEthernet0/0
С
С
       172.16.2.0 is directly connected, Serial0/0/0
S
        172.16.3.0 is directly connected, Serial0/0/1
C
    192.168.1.0/24 is directly connected, Serial0/0/1
s*
    0.0.0/0 is directly connected, Serial0/0/1
```

Misconfigured route to 172.16.3.0/24

2.7.3 Solving the Missing Route

Obviously, from the topology, we can see that R1 has the 172.16.3.0/24 network. Therefore, R2 must use Serial 0/0/0 as the exit interface - not Serial0/0/1

To remedy the situation, remove the incorrect route and add the route for network 172.16.3.0/24 with the Serial 0/0/0 specified as the exit interface. R2(config)#no ip route 172.16.3.0 255.255.255.0 serial0/0/1 R2(config)#ip route 172.16.3.0 255.255.255.0 serial 0/0/0

2.7.3 Solving the Missing Route

Packet Tracer Exploration: Solving the Missing Route

Use the Packet Tracer Activity to see how the loop explained in this section can occur. In Simulation mode, watch as R2 and R3 loop a packet for 172.16.3.10 until the TTL field reaches zero. Then fix the problem and test for connectivity between PC1 and PC3.

2.8.1 Basic Static Route Configuration

Hands-on Lab: Basic Static Route Configuration

In this lab activity, you will create a network like the one used in this chapter. You will cable the network and perform the initial router configurations required for connectivity. After completing the basic configuration, you will test connectivity between the devices on the network. You will then configure the static routes that are needed to allow communication between the hosts.

2.8.1 Basic Static Route Configuration

R

Packet Tracer Exploration: Basic Static Route Configuration

Use this Packet Tracer Activity to repeat a simulation of Lab 2.8.1. Remember, however, that Packet Tracer is not a substitute for a hands-on lab experience with real equipment.

A summary of the instructions is provided within the activity. Use the Lab PDF for more details.

2.8.2 Challenge Static Route Configuration

Hands-on Lab: Challenge Static Route Configuration

In this lab activity, you will be given a network address that must be subnetted to complete the addressing of the network. The addressing for the LAN connected to the ISP router and the link between the HQ and ISP routers has already been completed. Static routes will also need to be configured so that hosts on networks that are not directly connected will be able to communicate with each other.

2.8.3 Troubleshooting Static Routes

Hands-on Lab: Troubleshooting Static Routes

In this lab, you will begin by loading corrupted configuration scripts on each of the routers. These scripts contain errors that will prevent end-to-end communication across the network. You will need to troubleshoot each router to determine the configuration errors, and then use the appropriate commands to correct the configurations. When you have corrected all of the configuration errors, all of the hosts on the network should be able to communicate with each other.

2.8.3 Troubleshooting Static Routes

Packet Tracer Exploration: Troubleshooting Static Routes

Use this Packet Tracer Activity to repeat a simulation of Lab 2.8.3. Remember, however, that Packet Tracer is not a substitute for a hands-on lab experience with real equipment.

A summary of the instructions is provided within the activity. Use the Lab PDF for more details.

In this chapter, you have learned to:

- Define the general role a router plays in networks.
- Describe the directly connected networks and the different router interfaces.
- Examine directly connected networks in the routing table and use the CDP protocol.
- Describe static routes with exit interfaces.
- Describe summary and default route.
- Examine how packets get forwarded when using static routes.
- Identify how to manage and troubleshoot static routes.
