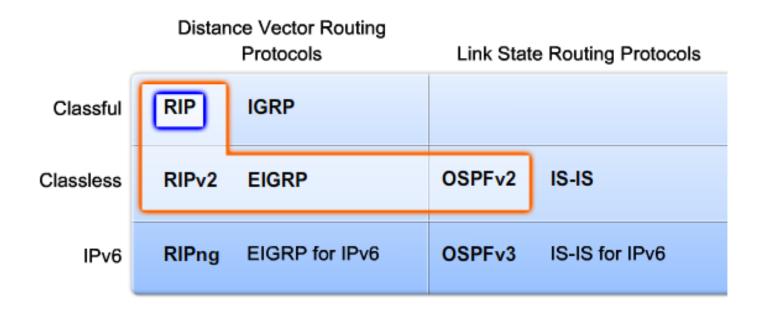
## ··|···|·· cisco

#### Video Frank Schneemann, MS EdTech



## Routing Protocols and Concepts – Chapter 9

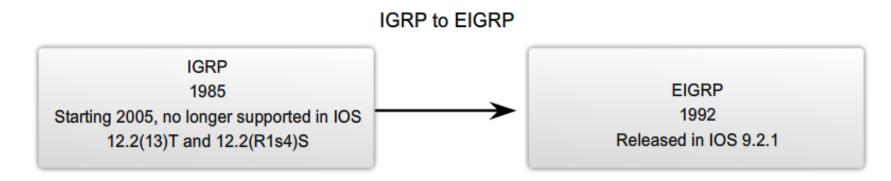



ITE PC v4.0 Chapter 1

© 2007 Cisco Systems, Inc. All rights reserved

# Enhanced Interior Gateway Routing Protocol (EIGRP) is a distance vector, classless routing protocol

- Describe the background and history of Enhanced Interior Gateway Routing Protocol (EIGRP).
- Examine the basic EIGRP configuration commands and identify their purposes.
- Calculate the composite metric used by EIGRP.
- Describe the concepts and operation of DUAL.
- Describe the uses of additional configuration commands in EIGRP.


#### Interior Gateway Protocols



#### In this chapter, you will learn to:

- Describe the background and history of EIGRP.
- Describe the features and operation of EIGRP.
- Examine the basic EIGRP configuration commands and identify their purposes.
- Calculate the composite metric used by EIGRP.
- Describe the concepts and operation of DUAL.
- Describe the uses of additional configuration commands in EIGRP.

### 9.1.1 - EIGRP An Ehhanced Distance Vector Routing Protocol



#### Summary of Operations

#### Traditional Distance Vector Routing Protocols

- Use the Bellman-Ford or Ford-Fulkerson algorithm.
- Age out routing entries and uses periodic updates.
- Keep track of only the best routes; the best path to a destination network.
- When a route becomes unavailable, the router must wait for a new routing update.
- Slower convergence due to holddown timers.

#### Enhanced Distance Vector Routing Protocol: EIGRP

- Uses the Diffusing Update Algorithm (DUAL).
- Does not age out routing entries nor uses periodic updates.
- Maintains a topology table separate from the routing table, which includes the best path and any loop-free backup paths.
- When a route becomes unavailable, DUAL will use a backup path if one exists in the topology table.
- Faster convergence due to the absence of holddown timers and a system of coordinated route calculations.

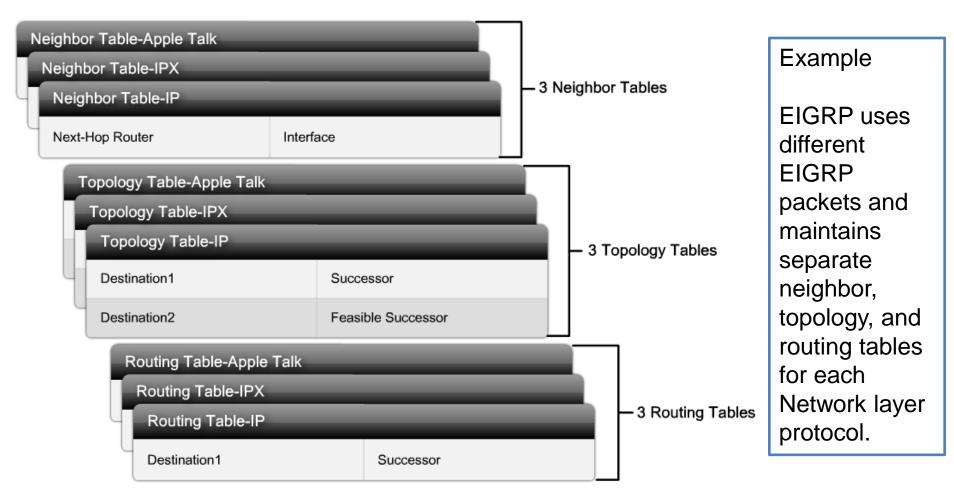
## 9.1.2 EIGRP Message Format

#### Encapsulated EIGRP Message

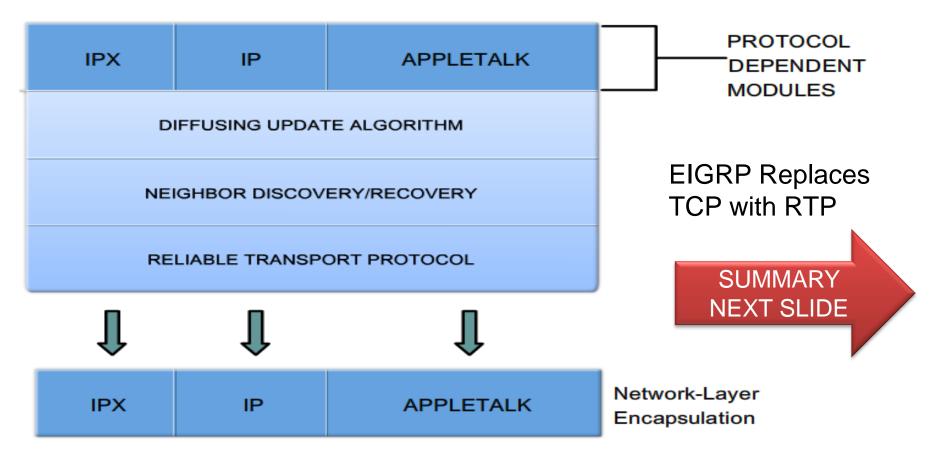
| Data Link Frame<br>Header | IP Packet<br>Header  | EIGRP Packet<br>Header  | Type/Length/Values Types  |
|---------------------------|----------------------|-------------------------|---------------------------|
| Data Link Frame           |                      |                         |                           |
| MAC Destination Address   | s = Multicast: 01-00 | -5E-00-00-0A            |                           |
| MAC Source Address = A    | ddress of sending    | interface               |                           |
|                           | IP Packet            |                         |                           |
|                           | IP Source Addres     | ss = Address of sending | interface                 |
|                           | IP Destination Ad    | dress = Multicast: 224. | 0.0.10                    |
|                           | Protocol field = 88  | 8 for EIGRP             |                           |
|                           |                      | EIGRP Packet Heade      | r                         |
|                           |                      | Opcode for EIGRP pa     | acket type                |
|                           |                      | AS Number               |                           |
|                           |                      | 1                       | TLV Types                 |
|                           |                      |                         | Some types include:       |
|                           |                      | (                       | 0x0001 EIGRP Parameters   |
|                           |                      | (                       | 0x0102 IP Internal Routes |
|                           |                      | (                       | 0x0103 IP External Routes |

Encapsulated EIGRP Message

| Data Link Frame<br>Header IP Packet Header | EIGRP Packet Header | Type/Length/Values Types |  |
|--------------------------------------------|---------------------|--------------------------|--|
|--------------------------------------------|---------------------|--------------------------|--|


- Every EIGRP message includes the header. Important fields for our discussion include the Opcode field and the Autonomous System Number field. Opcode specifies the EIGRP packet type:
- The EIGRP parameters message includes the weights that EIGRP uses for its composite metric. By default, only bandwidth and delay are weighted
- The **IP Internal message** is used to advertise EIGRP routes within an autonomous system.
- The **IP External message** is used when external routes are imported into the EIGRP routing process.

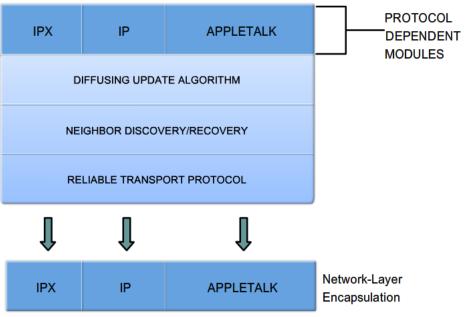
The Autonomous System (AS) Number specifies the EIGRP routing process. Unlike RIP, Cisco routers can run multiple instances of EIGRP. The AS number is used to track multiple instances of EIGRP.


#### In the curriculum you will be able to get more detailed information about the message format fields

## 9.1.3 Protocol Dependent Modules (PDM)

EIGRP Protocol-Dependent Modules (PDM)

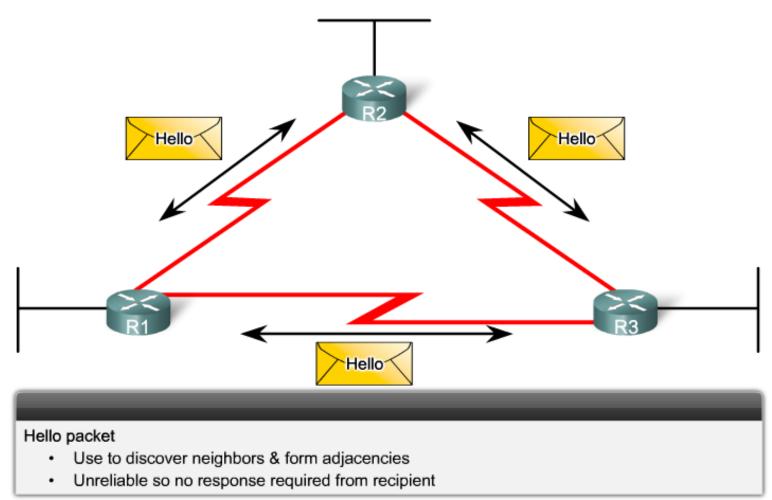



EIGRP has the capability for routing several different protocols including IP, IPX, and AppleTalk using protocol-dependent modules (PDM). PDMs are responsible for the specific routing tasks for each Network layer protocol.



**Reliable Transport Protocol (RTP)** is the protocol used by EIGRP for the delivery and reception of EIGRP packets. EIGRP was designed as a **Network layer independent routing protocol**; therefore, it cannot use the services of UDP or TCP because IPX and Appletalk do not use protocols from the TCP/IP protocol suite. The figure shows conceptually how RTP operates.

- **Reliable Transport Protocol (RTP)**
- Purpose of RTP
  - –Used by EIGRP to transmit and receive EIGRP packets
- Characteristics of RTP
  - -Involves both reliable & unreliable delivery of EIGRP packet
    - Reliable delivery requires acknowledgment from destination
    - Unreliable delivery does not require an acknowledgement from destination
  - -Packets can be sent
    - Unicast
    - Multicast

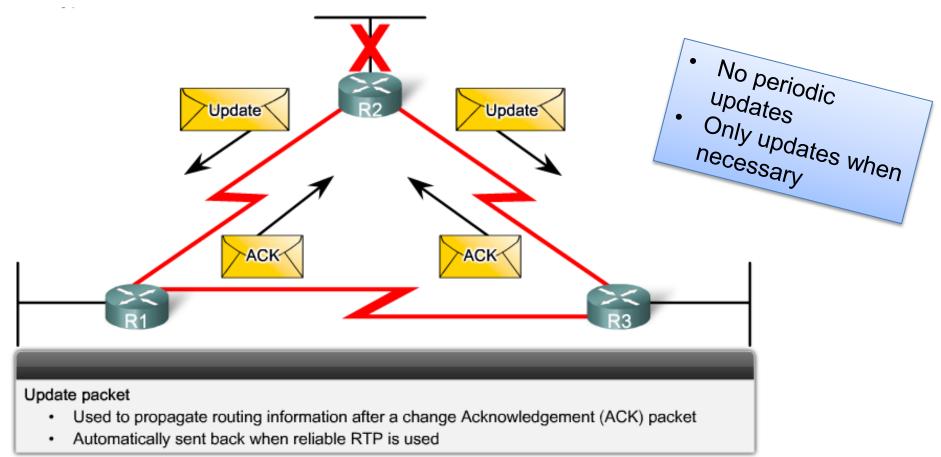

Using address 224.0.0.10

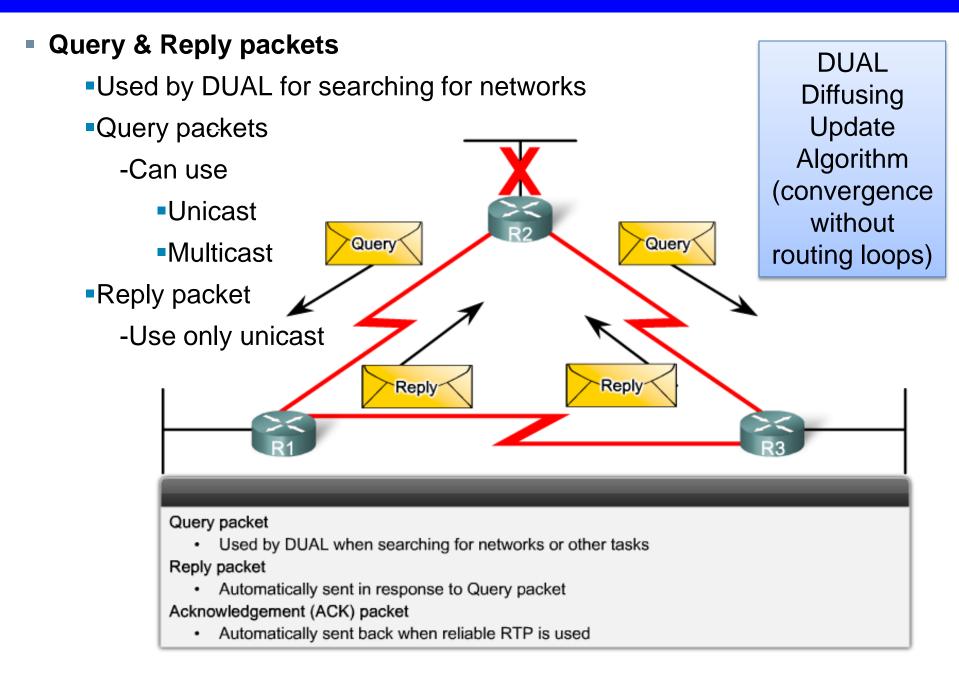


EIGRP's 5 Packet Types

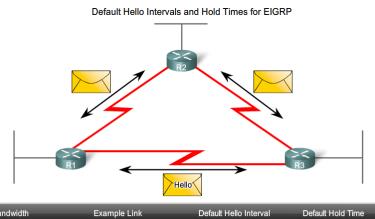
## Hello packets

–Used to discover & form adjacencies with neighbors





## Update packets

–Used to propagate routing information


## Acknowledgement packets

-Used to acknowledge receipt of update, query & reply packets





Before any EIGRP packets can be exchanged between routers, EIGRP must first discover its neighbors. EIGRP neighbors are other routers running EIGRP on shared, directly connected networks.

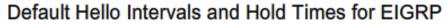


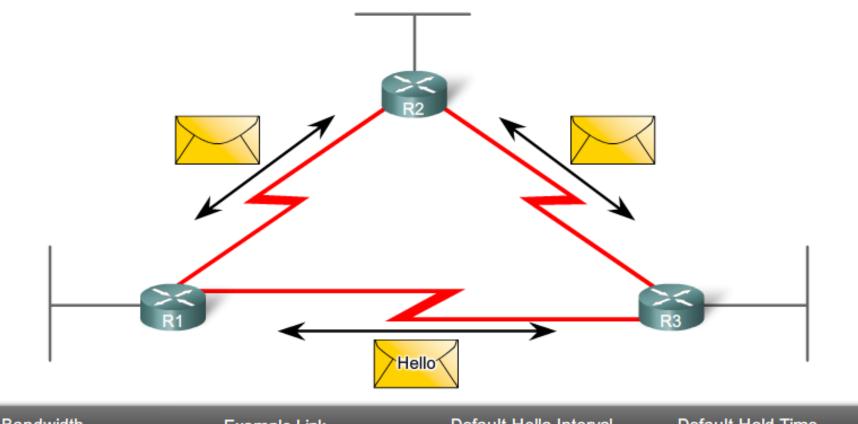
| Bandwidth                  | Example Link              | Default Hello Interval | Default Hold Time |
|----------------------------|---------------------------|------------------------|-------------------|
| 1.544 Mbps                 | Multipoint<br>Frame Relay | 60 seconds             | 180 seconds       |
| Greater than<br>1.544 Mbps | T1,<br>Ethernet           | 5 seconds              | 15 seconds        |

## Purpose of Hello Protocol

-To discover & establish adjacencies with neighbor routers

# Characteristics of hello protocol Time interval for sending hello packet


- Most networks it is every 5 seconds
- Multipoint non broadcast multi-access networks


-Unicast every 60 seconds

## - Holdtime

- This is the maximum time router should wait before declaring a neighbor down
- Default holdtime
  - -3 times hello interval

## 9.1.5 Hello Protocol





| Bandwidth                  | Ехатріе Link              |            |             |
|----------------------------|---------------------------|------------|-------------|
| 1.544 Mbps                 | Multipoint<br>Frame Relay | 60 seconds | 180 seconds |
| Greater than<br>1.544 Mbps | T1,<br>Ethernet           | 5 seconds  | 15 seconds  |

## **EIGRP Bounded Updates**

- EIGRP only sends update when there is a change in route status
- Partial update
  - A partial update includes only the route information that has changed – the whole routing table is NOT sent
- Bounded update
  - When a route changes, only those devices that are impacted will be notified of the change
- EIGRP's use of partial bounded updates minimizes use of bandwidth

EIGRP Updates are partial and bounded:

*Partial* because the update only includes information about route changes.

*Bounded* because only those routers affected by the change will receive the update.

## 9.1.7 DUAL UPDATES

Diffusing Update Algorithm (DUAL) is the convergence algorithm used by EIGRP instead of the Bellman-Ford or Ford Fulkerson algorithms used by other distance vector routing protocols, like RIP

## Diffusing Update Algorithm (DUAL)

- -Purpose
  - •EIGRP's primary method for preventing routing loops
- -Advantage of using DUAL

 Provides for fast convergence time by keeping a list of loop-free backup routes

- Allows all routers involved in a topology change to synchronize at the same time.
- Routers that are not affected by the topology changes are not involved in the recompilation.
- This method provides EIGRP with faster convergence times than other distance vector routing protocols
- Uses a series of updates and acknowledgements

## 9.1.8 Default Administrative Distances

Administrative Distance (AD)

-Defined as the trustworthiness of the source route

- EIGRP default administrative distances
  - -Summary routes = 5
  - -Internal routes = 90

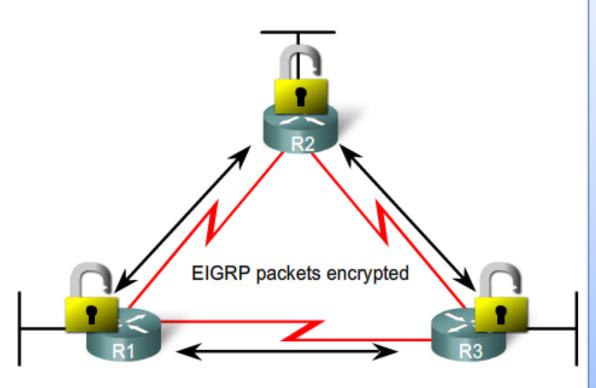
-Imported routes = 170

| Route Source        | Administrative Distance |
|---------------------|-------------------------|
| Connected           | 0                       |
| Static              | 1                       |
| EIGRP summary route | 5                       |
| External BGP        | 20                      |
| Internal EIGRP      | 90                      |
| IGRP                | 100                     |
| OSPF                | 110                     |
| IS-IS               | 115                     |
| RIP                 | 120                     |
| External EIGRP      | 170                     |
| Internal BGP        | 200                     |

Administrative distance (AD) is the trustworthiness (or preference) of the route source

When compared to other interior gateway protocols (IGPs), EIGRP is the most preferred by the Cisco IOS because it has the lowest administrative distance.

## Interior Gateway Protocols

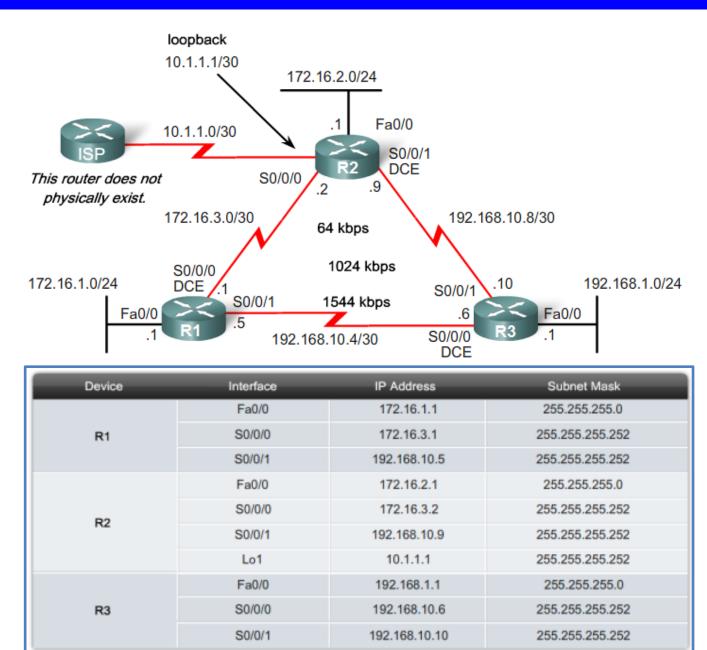

Internet protocol used to exchange routing information within an autonomous system. Examples of common Internet IGPs include IGRP, OSPF, and RIP.

## Border Gateway Routing (BGP)

Border Gateway Protocol. Interdomain routing protocol that replaces EGP. BGP exchanges reachability information with other BGP systems. It is defined by RFC 1163.

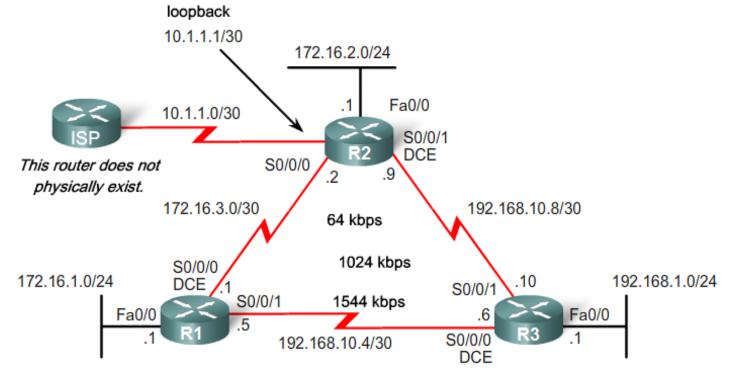
## Authentication

- EIGRP can
  - Encrypt routing information
  - Authenticate routing information



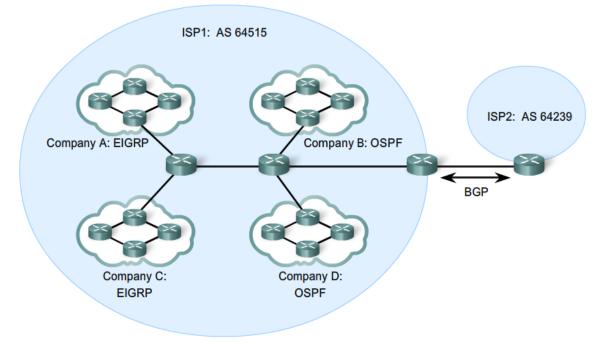



Ensures that routers will only accept routing information from other routers that have been configured with the same password or authentication information.

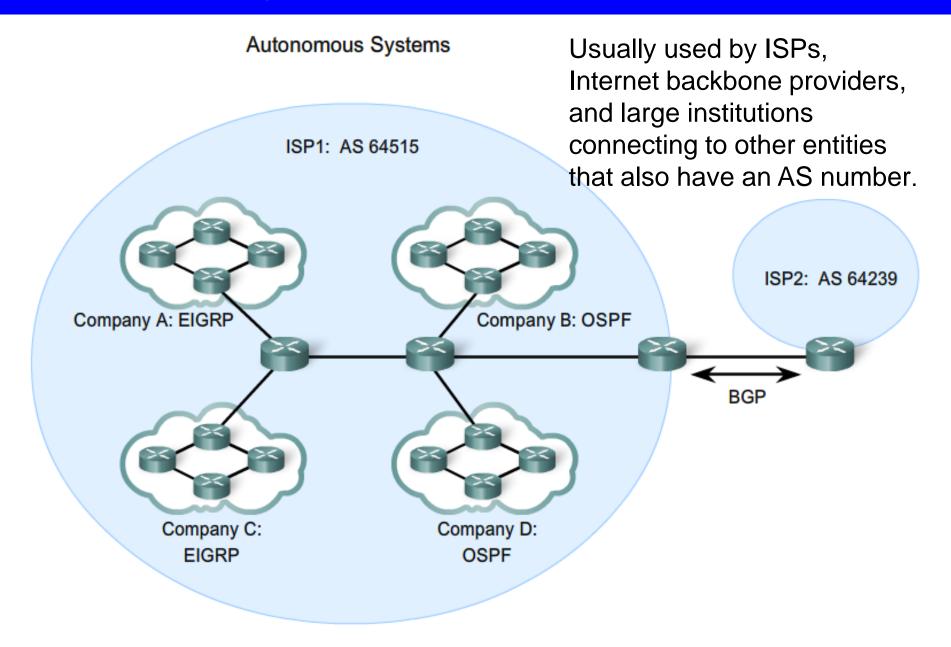

Note: Authentication does not encrypt the router's routing table

## 9.2.1 EIGRP Topology




The figure shows our topology from previous chapters, but now includes the addition of the ISP router. Notice that both the R1 and R2 routers have subnets that are part of the 172 16 0 0/16 classful network, a class B address. The fact that 172.16.0.0 is a class B address is only relevant because EIGRP automatically summarizes at classful boundaries, similar to RIP.

- The ISP router does not physically exist in our configurations. The connection between R2 and ISP is represented with a loopback interface on router R2.
- A loopback interface can be used to represent an interface on a router that does not have any actual connection to a **physical link** on the network.
- Loopback addresses can be verified with the ping command and included in routing updates.

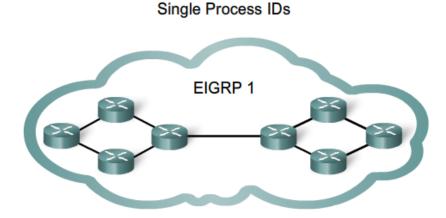



## Autonomous System (AS) & Process IDs

- -This is a collection of networks under the control of a single authority
- -AS Numbers are assigned by IANA
- -Entities needing AS numbers
  - ISP
  - Internet Backbone providers
  - Institutions connecting to other institutions using AS numbers



#### 9.2.2 Autonomous Systems and Process ID's




## 9.2.2 Autonomous Systems and Process ID's

- EIGRP autonomous system number actually functions as a process ID
- Process ID represents an instance of the routing protocol running on a router
- Example

Router(config)#router

eigrp autonomous-system



EIGRP requires all routers in the same routing domain to be configured with the same process ID

R1(config)**#router eigrp ?** <1-65535> Autonomous system number R1(config)**#router eigrp 1** 

Although the Cisco IOS refers to the router eigrp parameter as an "Autonomous system number", this parameter configures an EIGRP process-an instance of EIGRP running on the router-and has nothing to do with AS configurations in ISP routers.

## 9.2.3 The Router IGRP Command

The router eigrp command

The global command that enables eigrp is

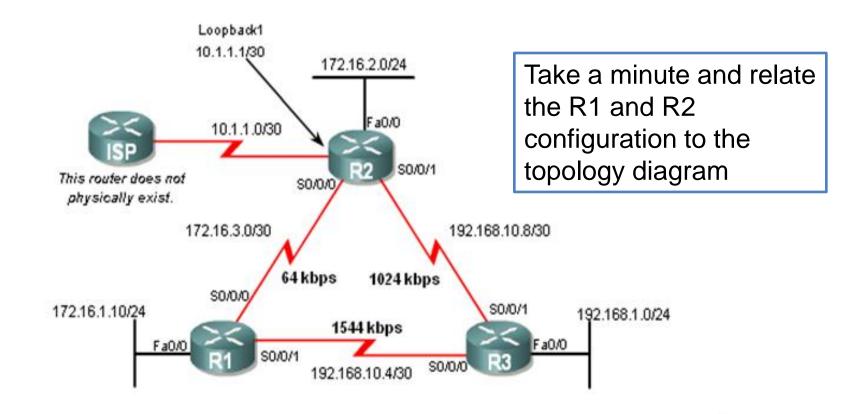
router eigrp autonomous-system

-All routers in the EIGRP routing domain must use the same process ID number (autonomous-system number)

R1(config) #**router eigrp 1** R1(config-router)#

R2(config)#**router eigrp 1** R2(config-router)#

R3(config) **#router eigrp 1** R3(config-router)#


## **The Network Command**

- Functions of the network command
  - -Enables interfaces to transmit & receive EIGRP updates
  - -Includes network or subnet in EIGRP updates
- Example
  - -Router(config-router)#network network-address

```
R1 (config) #router eigrp 1
R1 (config-router) #network 172.16.0.0
R1 (config-router) #network 192.168.10.0
R2 (config) #router eigrp 1
R2 (config-router) #network 172.16.0.0
%DUAL-5-NBRCHANGE: IP-EIGRP 1: Neighbor 172.16.3.1 (Serial0/0/0) is up: new adjacency
```

#### 9.2.4 The Network Command

#### **Enabling EIGRP Routing**



R1 (config) **#router eigrp 1** R1 (config-router) **#network 172.16.0.0** R1 (config-router) **#network 192.168.10.0** 

R2(config) #router eigrp 1 R2(config-router)#network 172.16.0.0 %DUAL-5-NBRCHANGE: IP-EIGRP 1: Neighbor 172.16.3.1 (Serial0/0/0) is up: new adjacency The network Command with a Wildcard Mask

-This option is used when you want to configure EIGRP to advertise specific subnets

-Example

Router(config-router)#network network-address [wildcard-mask]

R1(config) #router eigrp 1
R1(config-router) #network 172.16.0.0
R1(config-router) #network 192.168.10.0

R2(config) #router eigrp 1
R2(config-router) #network 172.16.0.0
%DUAL-5-NBRCHANGE: IP-EIGRP 1: Neighbor 172.16.3.1 (Serial0/0/0) is up: new adjacency
R2(config-router) #network 192.168.10.8 0.0.0.3

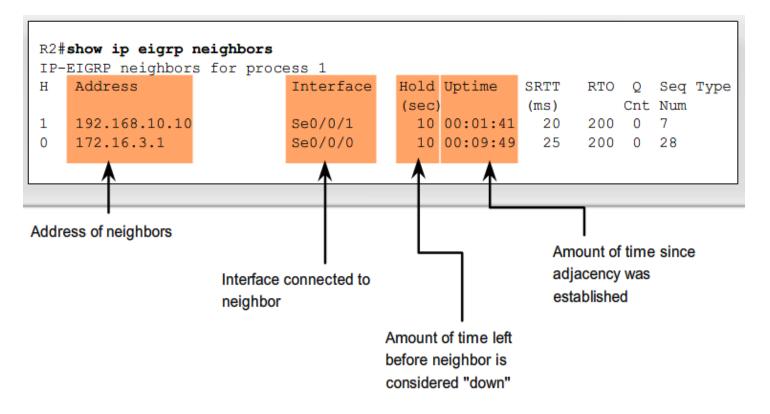
R3(config)#router eigrp 1 R3(config-router)#network 192.168.10.0 %DUAL-5-NBRCHANGE: IP-EIGRP 1: Neighbor 192.168.10.5 (Serial0/0/0) is up: new adjacency R3(config-router)# %DUAL-5-NBRCHANGE: IP-EIGRP 1: Neighbor 192.168.10.9 (Serial0/0/1) is up: new adjacency R3(config-router)#network 192.168.1.0

## 9.2.4 The Network Command

By default, when using the network command and a classful network address such as 172.16.0.0, all interfaces on the router that belong to that classful network address will be enabled for EIGRP. However, there may be times when the network administrator does not want to include all interfaces within a network when enabling EIGRP. To configure EIGRP to advertise specific subnets only, use the wildcard-mask option with the network command:

Router(config-router)#network network-address [wildcard-mask]

Think of a wildcard mask as the inverse of a subnet mask. The inverse of subnet mask 255.255.255.252 is 0.0.0.3. To calculate the inverse of the subnet mask, subtract the subnet mask from 255.255.255.255.255.


255.255.255.255 - 255.255.255.252 Subtract the subnet mask

0. 0. 0. 3 Wildcard mask

## Verifying EIGRP

- EIGRP routers must establish adjacencies with their neighbors before any updates can be sent or received
- Command used to view neighbor table and verify that EIGRP has established adjacencies with neighbors is

## show ip eigrp neighbors



## 9.2.5 Verifying EIGRP

## The show ip protocols command is also used to verify that EIGRP is enabled

```
R1#show ip protocols
Routing Protocol is "eigrp 1"
  Outgoing update filter list for all interfaces is not set
  Incoming update filter list for all interfaces is not set
  Default networks flagged in outgoing updates
  Default networks accepted from incoming updates
 EIGRP metric weight K1=1, K2=0, K3=1, K4=0, K5=0
 EIGRP maximum hopcount 100
  EIGRP maximum metric variance 1
  Redistributing: eigrp 1
 Automatic network summarization is in effect
 Automatic address summarization:
    192.168.10.0/24 for FastEthernet0/0, Serial0/0/0
      Summarizing with metric 2169856
    172.16.0.0/16 for Serial0/0/1
      Summarizing with metric 28160
 Maximum path: 4
 Routing for Networks:
    172.16.0.0
   192.168.10.0
 Routing Information Sources:
                   Distance
                                  Last Update
    Gateway
    (this router)
                          90
                                  00:03:29
                          90
    192.168.10.6
                                  00:02:09
   Gateway Distance
                                  Last Update
                                  00:02:12
    172.16.3.2
                          90
  Distance: internal 90 external 170
```

Notice that the output specifies the process ID used by EIGRP:

 Routing Protocol is "eigrp 1"

Remember, the process ID must be the same on all routers for EIGRP to establish neighbor adjacencies and share routing information.

EIGRP's internal and external administrative distances are also displayed:

 Distance: internal 90 external 170

## **9.2.6 Examining the Routing Table**

## **Examining the Routing Table**

- The show ip route command is also used to verify EIGRP
- EIGRP routes are denoted in a routing table by the letter "D"
- By default, EIGRP automatically summarizes routes at major network boundary

```
R1#show ip route
Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
       N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
<Output omitted>
Gateway of last resort is not set
     192.168.10.0/24 is variably subnetted, 3 subnets, 2 masks
        192.168.10.0/24 is a summary, 00:03:50, NullO
D
        192.168.10.4/30 is directly connected, Serial0/0/1
С
D
        192.168.10.8/30 [90/2681856] via 192.168.10.6, 00:02:43, Serial0/0/1
     172.16.0.0/16 is variably subnetted, 4 subnets, 3 masks
        172.16.0.0/16 is a summary, 00:10:52, NullO
D
С
        172.16.1.0/24 is directly connected, FastEthernet0/0
        172.16.2.0/24 [90/2172416] via 172.16.3.2, 00:10:47, Serial0/0/0
D
С
        172.16.3.0/30 is directly connected, Serial0/0/0
     192.168.1.0/24 [90/2172416] via 192.168.10.6, 00:02:31, Serial0/0/1
D
```

## Introducing the Null0 Summary Route

-Null0 is not a physical interface

## -In the routing table summary routes are sourced from Null0

Reason: routes are used for advertisement purposes

-EIGRP will automatically include a null0 summary route as child route when 2 conditions are met

At least one subnet is learned via EIGRP

Automatic summarization is enabled

| R2#show ip route                                                        |
|-------------------------------------------------------------------------|
|                                                                         |
| Gateway of last resort is not set                                       |
| 192.168.10.0/24 is variably subnetted, 3 subnets, 2 masks               |
| D 192.168.10.0/24 is a summary, 00:04:13, NullO                         |
| D 192.168.10.4/30 [90/2681856] via 192.168.10.10, 00:03:05, Serial0/0/1 |
| C 192.168.10.8/30 is directly connected, Serial0/0/1                    |
| 172.16.0.0/16 is variably subnetted, 4 subnets, 3 masks                 |
| D 172.16.0.0/16 is a summary, 00:04:07, Null0                           |
| D 172.16.1.0/24 [90/2172416] via 172.16.3.1, 00:11:11, Serial0/0/0      |
| C 172.16.2.0/24 is directly connected, FastEthernet0/0                  |
| C 172.16.3.0/30 is directly connected, Serial0/0/0                      |
| 10.0.0/30 is subnetted, 1 subnets                                       |
| C 10.1.1.0 is directly connected, Loopback1                             |
| D 192.168.1.0/24 [90/2172416] via 192.168.10.10, 00:02:54, Serial0/0/1  |
|                                                                         |
|                                                                         |
|                                                                         |
| Summary Routes to NullO                                                 |
|                                                                         |

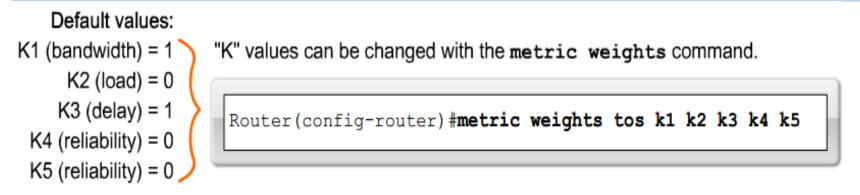
## 9.2.6 Examining the Routing Table



## 9.3.1 EIGRP Composite Metric and K Values

## **EIGRP Composite Metric & the K Values**

- EIGRP uses the following values in its composite metric --Bandwidth, delay, reliability, and load
- The composite metric used by EIGRP
  - -formula used has values K1  $\rightarrow$ K5


```
-K1 \& K3 = 1
```

-all other K value = 0

Default Composite Formula: metric = [K1\*bandwidth + K3\*delay]

```
Complete Composite Formula:
metric = [K1*bandwidth + (K2*bandwidth)/(256 - load) + K3*delay] * [K5/(reliability + K4)]
```

```
(Not used if "K" values are 0)
```



## Use the **show ip protocols** command to verify the K values

## **R1 K Values**

```
R1#show ip protocols
Routing Protocol is "eigrp 1"
Outgoing update filter list for all interfaces is not set
Incoming update filter list for all interfaces is not set
Default networks flagged in outgoing updates
Default networks accepted from incoming updates
EIGRP metric weight K1=1, K2=0, K3=1, K4=0, K5=0
EIGRP maximum hopcount 100
EIGRP maximum metric variance 1
Redistributing: eigrp 1
Automatic network summarization is in effect
Automatic address summarization:
192.168.10.0/24 for FastEthernet0/0, Serial0/0/0
```

Changing these values to other than the default is not recommended unless the network administrator has a very good reason to do so. **EIGRP** Metrics

- Use the show interfaces command to view metrics
- EIGRP Metrics

**Bandwidth** – EIGRP uses a static bandwidth to calculate metric Most serial interfaces use a default bandwidth value of 1.544Mbos (T1)

```
R1#show interface serial 0/0/0
Serial0/0/0 is up, line protocol is up
Hardware is GT96K Serial
Description: Link to R2
Internet address is 172.16.3.1/30
MTU 1500 bytes, BW 1544 Kbit, DLY 20000 usec,
    reliability 255/255, txload 1/255, rxload 1/255
Encapsulation HDLC, loopback not set
Keepalive set (10 sec)
Last input 00:00:00, output 00:00:01, output hang never
Last clearing of "show interface" counters 3d22h
```

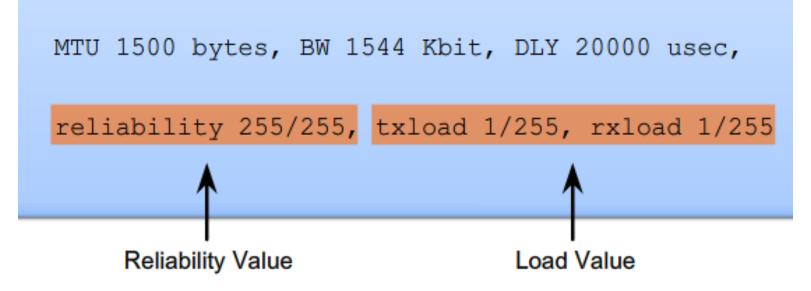
**EIGRP** Metrics

 Delay is the defined as the measure of time it takes for a packet to traverse a route

-it is a static value based on link type to which interface is connected

| Media               | Delay     |  |
|---------------------|-----------|--|
| 100M ATM            | 100 µs    |  |
| Fast Ethernet       | 100 µs    |  |
| FDDI                | 100 µs    |  |
| 1HSSI               | 20,000 µs |  |
| 16M Token Ring      | 630 µs    |  |
| Ethernet            | 1,000 µs  |  |
| T1 (Serial Default) | 20,000 µs |  |
| 512K                | 20,000 µs |  |
| DSO                 | 20,000 µs |  |
| 56K                 | 20,000 µs |  |




• **Reliability** (not a default EIGRP metric)

-A measure of the likelihood that a link will fail

- -Measure dynamically & expressed as a fraction of 255 the higher the fraction the better the reliability
- Load (not a default EIGRP metric)
  - A number that reflects how much traffic is using a link

Number is determined dynamically and is expressed as a fraction of 255

The lower the fraction the less the load on the link



Using the Bandwidth Command

- Modifying the interface bandwidth
  - -Use the *bandwidth* command
  - -Example

Router(configif)#*bandwidth* kilobits

Verifying bandwidth

–Use the *show interface* command

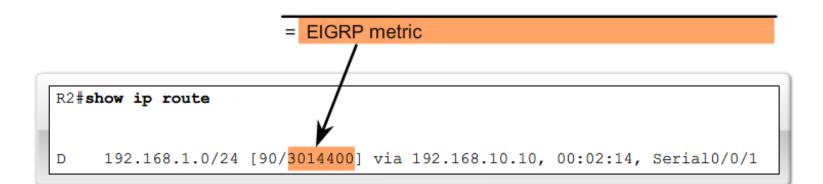
 Note – bandwidth command does not change the link's physical bandwidth R1(config)#inter s 0/0/0 R1(config-if)#bandwidth 64

R2(config)#inter s 0/0/0
R2(config-if)#bandwidth 64
R2(config)#inter s 0/0/1
R2(config-if)#bandwidth 1024

R3(config)#inter s 0/0/1 R3(config-if)#bandwidth 1024

Plus the sum of the delays:

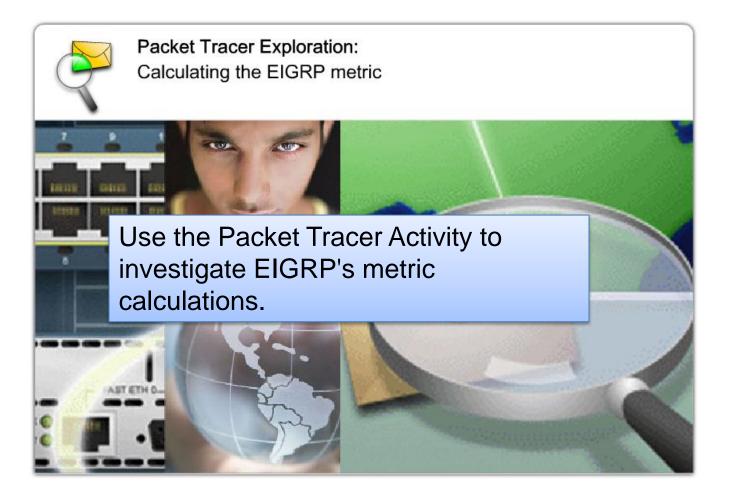
#### The EIGRP metric can be determined by examining the bandwidth delay


Calculating the EIGRP Default Metric

```
Default metric = [K1*bandwidth + K3*delay] * 256
```

Since K1 and K3 both equal 1, the formula simplifies to: bandwidth + delay

bandwidth = speed of slowest link in route to the destination delay = sum of the delays of each link in route to the destination


Slowest bandwidth: (10,000,000/bandwidth kbps) \* 256



+ (sum of delay/10) \* 256

- EIGRP uses the lowest bandwidth (BW)in its metric calculation
- Calculated BW = reference BW / lowest BW(kbps)
- Delay EIGRP uses the cumulative sum of all outgoing interfaces
  - Calculated Delay = the sum of outgoing interface delays
- EIGRP Metric = calculated BW + calculated delay

#### 9.3.4 Calculating the EIGRP Metric



#### The Diffusing Update Algorithm (DUAL) is used to prevent looping

# **DUAL Concepts**

## DUAL provides:

- Loop-free paths
- Loop-free backup paths which can be used immediately
- Fast convergence
- Minimum bandwidth usage with bounded updates

#### 9.4.2 Successor and Feasible Distance

#### Successor

The best least cost route to a destination found in the routing table

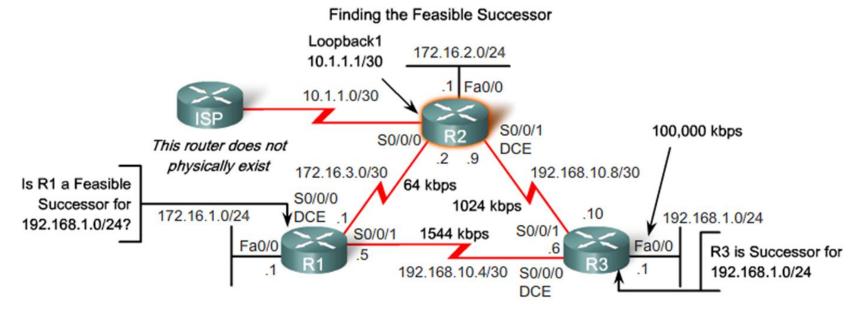
#### Feasible distance

The lowest calculated metric along a path to a destination network

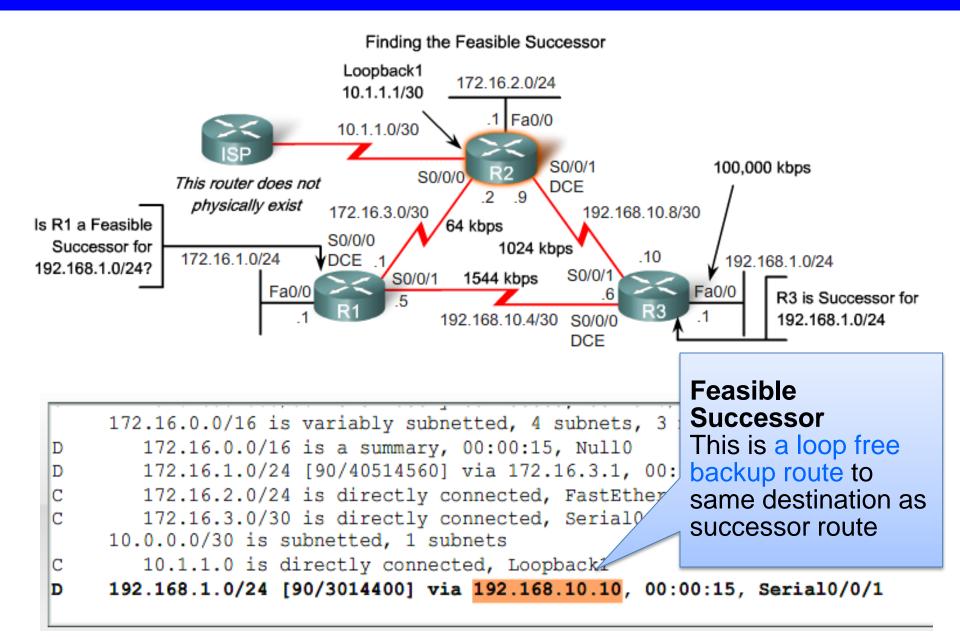
```
R2#show ip route
 ***output omitted***
  Gateway of last resort is not set
       192.168.10.0/24 is variably subnetted, 3 subnets, 2 masks
          192.168.10.0/24 is a summary, 00:00:15, NullO
  D
          192.168.10.4/30 [90/21024000] via 192.168.10.10, 00:00:15, Serial0/0/1
  D
          192.168.10.8/30 is directly connected, Serial0/0/1
  С
       172.16.0.0/16 is variably subnetted, 4 subnets, 3 masks
          172.16.0.0/16 is a summary, 00:00:15, NullO
  D
          172.16.1.0/24 [90/40514560] via 172.16.3.1, 00:00:15, Serial0/0/0
  D
          172.16.2.0/24 is directly connected, FastEthernet0/0
  С
          172.16.3.0/30 is directly connected, Serial0/0/0
  С
       10.0.0/30 is subnetted, 1 subnets
          10.1.1.0 is directly connected, Loopback1
  С
       192.168.1.0/24 [90/3014400] via 192.168.10.10, 00:00:15, Serial0/0/1
  D
                     Feasible Distance
                                          Successor
R3 at 192,168,10,10 is the successor for network 192,168,1.0/24. This route has a feasible
distance of 3014400.
```

#### 9.4.3 Feasibile Successors, Feasibility Condition and Reported Distance

#### Feasible Successors, Feasibility Condition & Reported Distance


#### Feasible Successor

This is a loop free backup route to same destination as successor route


#### Reported distance (RD)

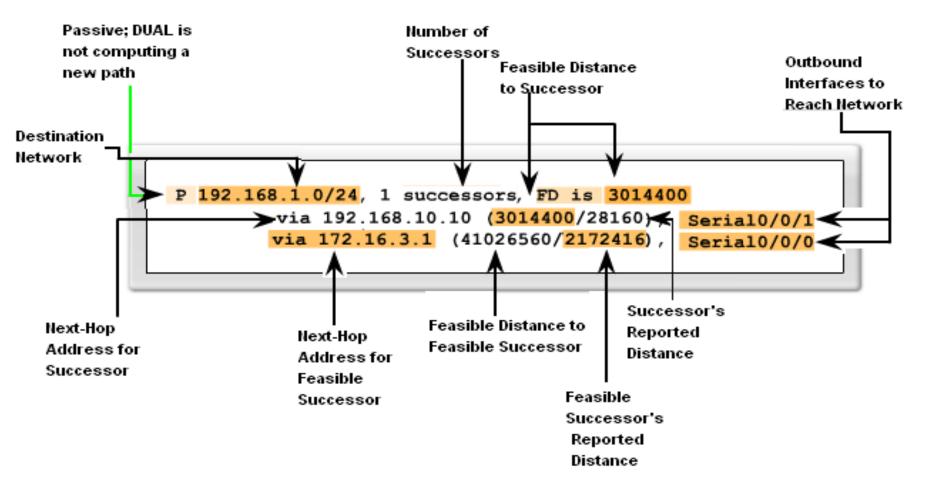
The metric that a router reports to a neighbor about its own cost to that network

Feasibility Condition (FC)
 Met when a neighbor's RD is less than the local router's FD to the same destination network



#### 9.4.3 Feasibile Successors, Feasibility Condition and Reported Distance




- The successor, feasible distance, and any feasible successors with their reported distances are kept by a router in its EIGRP topology table or topology database.
- As shown in the figure, the topology table can be viewed using the show ip eigrp topology command.
- The topology table lists all successors and feasible successors that DUAL has calculated to destination networks.

```
R2#show ip eigrp topology
IP-EIGRP Topology Table for AS(1)/ID(10.1.1.1)
Codes: P - Passive, A - Active, U - Update, Q - Query, R - Reply,
    r - reply Status, s - sia Status
P 192.168.1.0/24, 1 successors, FD is 3014400
    via 192.168.10.10 (3014400/28160), Serial0/0/1
    via 172.16.3.1 (41026560/2172416), Serial0/0/0
P 192.168.10.8/30, 1 successors, FD is 3011840
    via Connected, Serial0/1
```

Routes for 192.168.1.0/24

#### **EIGRP** Topology Table dissected

Table Entry for 192.168.1.0/24



To view detailed information about the metrics of a specific entry in the topology table, add the optional parameter [network] to the show ip eigrp topology command, as shown in the figure:

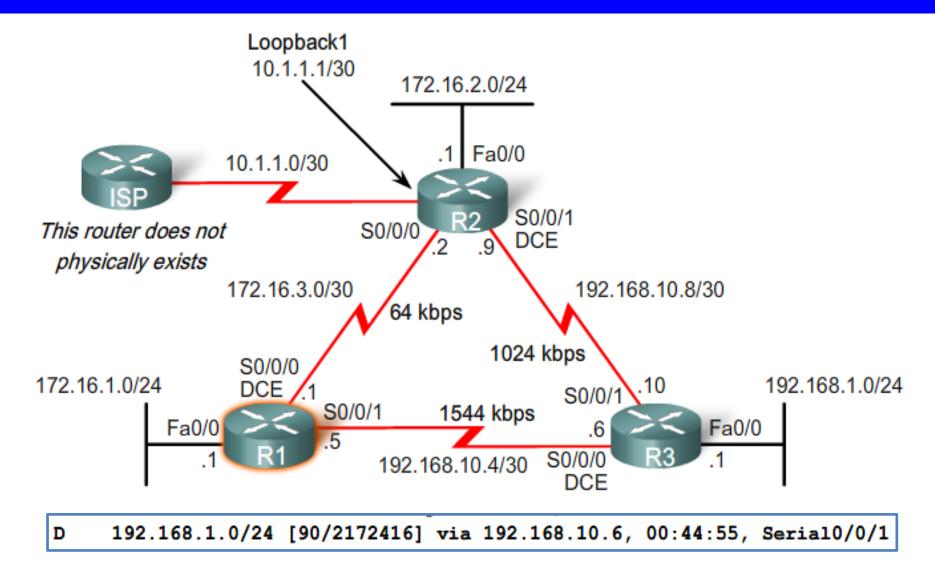
#### R2#show ip eigrp topology 192.168.1.0

Remember that EIGRP is a distance vector routing protocol. This command lists the full list of distance vector metrics available to EIGRP even though, by default, EIGRP only uses bandwidth and delay. It also displays other information included in the routing update, but not included in the composite metric: minimum MTU and hop count.

#### Topology Table: No Feasible Successor

 A feasible successor may not be present because the feasibility condition may not be met

-In other words, the reported distance of the neighbor is greater than or equal to the current feasible distance


#### Successor

The best least cost route to a destination found in the routing table

#### Feasible distance

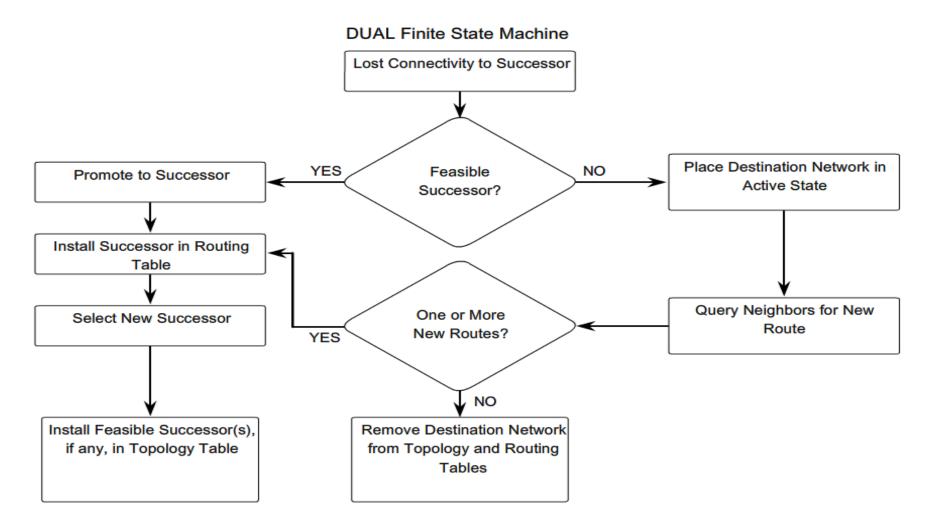
The lowest calculated metric along a path to a destination network

#### 9.4.5 Topology Table: No Feasible Successor



The route to 192.168.1.0/24 shows that the successor is R3 via 192.168.10.6 with a feasible distance of 2172416.

The centerpiece of EIGRP is DUAL and its EIGRP route-calculation engine. The actual name of this technology is DUAL Finite State Machine (FSM). This finite state machine contains all of the logic used to calculate and compare routes in an EIGRP network.


The figure on the next slide shows a simplified version of the DUAL FSM.

#### Finite Sate Machine (FSM)

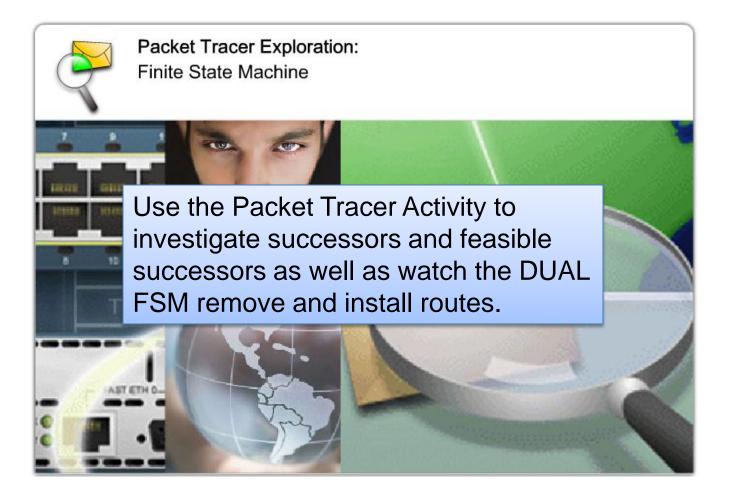
—An abstract machine that defines a set of possible states something can go through, what event causes those states and what events result form those states

-FSMs are used to describe how a device, computer program, or routing algorithm will react to a set of input events

#### 9.4.6 Finite State Machine



#### DUAL FSM


-Selects a best loop-free path to a destination

-Selects alternate routes by using information in EIGRP tables

Finite State Machines (FSM)

 To examine output from EIGRP's finite state machine us the *debug* eigrp fsm command

```
R2#debug eigrp fam
EIGRP FSM Events/Actions debugging is on
R2#conf t
Enter configuration commands, one per line. End with CNTL/Z.
R2(config) #int s0/0/1
R2(config-if) #shutdown
<some debug output omitted>
DUAL: Find FS for dest 192.168.1.0/24. FD is 3014400, RD is 3014400
DUAL: 192.168.10.10 metric 4294967295/4294967295
DUAL: 172.16.3.1 metric 41026560/2172416 found Dmin is 41026560
DUAL: Removing dest 192.168.1.0/24, nexthop 192.168.10.10
DUAL: RT installed 192.168.1.0/24 via 172.16.3.1
R2(config-if) #end
R2#undebug all
All possible debugging has been turned off
R2#show ip route
<some output omitted>
D
     192.168.1.0/24 [ 90/41026560] via 172.16.3.1, 00:08:58, Seria10/0
```



#### The Nullo Summary Route

- By default, EIGRP uses the Null0 interface to discard any packets that match the parent route but do not match any of the child routes
- EIGRP automatically includes a null0 summary route as a child route whenever both of the following conditions exist

-One or subnets exists that was learned via EIGRP

-Automatic summarization is enabled. The NullO interface is simply a route to nowhere, commonly known as "the bit bucket."

```
R1#show ip route
Codes: C - connected, S - static, R - RIP, M - mobile, B - BGP
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
       N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
       E1 - OSPF external type 1, E2 - OSPF external type 2
       i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2
       ia - IS-IS inter area, * - candidate default, U - per-user static route
       o - ODR, P - periodic downloaded static route
Gateway of last resort is not set
     192.168.10.0/24 is variably subnetted, 3 subnets, 2 masks
       192.168.10.0/24 is a summary, 00:45:09, Null0
D
С
        192.168.10.4/30 is directly connected, Serial0/0/1
D
        192.168.10.8/30 [90/3523840] via 192.168.10.6, 00:44:56, Serial0/0/1
     172.16.0.0/16 is variably subnetted, 4 subnets, 3 masks
D
        172.16.0.0/16 is a summary, 00:46:10, Null0
С
        172.16.1.0/24 is directly connected, FastEthernet0/0
D
        172.16.2.0/24 [90/40514560] via 172.16.3.2, 00:45:09, Serial0/0/0
С
        172.16.3.0/30 is directly connected, Serial0/0/0
     192.168.1.0/24 [90/2172416] via 192.168.10.6, 00:44:55, Serial0/0/1
D
```

EIGRP installs a Null0 summary route for each parent route. Packets matching the Null0 summary route are discarded.

#### **Disabling Automatic Summarization**

- The auto-summary command permits EIGRP to automatically summarize at major network boundaries
- The *no auto-summary* command is used to disable automatic summarization

-This causes all EIGRP neighbors to send updates that will not be automatically summarized

this will cause changes to appear in both

-routing tables

-topology tables

```
R3#show ip route

192.168.10.0/24 is variably subnetted, 3 subnets, 2 masks

D 192.168.10.0/24 is a summary, 01:08:35, NullO

C 192.168.10.4/30 is directly connected, Serial0/0/0

C 192.168.10.8/30 is directly connected, Serial0/0/1

D 172.16.0.0/16 [90/2172416] via 192.168.10.5, 01:08:30, Serial0/0/0

C 192.168.1.0/24 is directly connected, FastEthernet0/0
```

R3 uses the suboptimal route through R1 to reach 172.16.2.0.

EIGRP can be configured to summarize routes, whether or not automatic summarization (auto-summary) is enabled. Because EIGRP is a classless routing protocol and includes the subnet mask in the routing updates, manual summarization can include supernet routes. Remember, a supernet is an aggregation of multiple major classful network addresses.

#### **Manual Summarization**

Manual summarization can include supernets

Reason: EIGRP is a classless routing protocol & include subnet mask in update

Command used to configure manual summarization

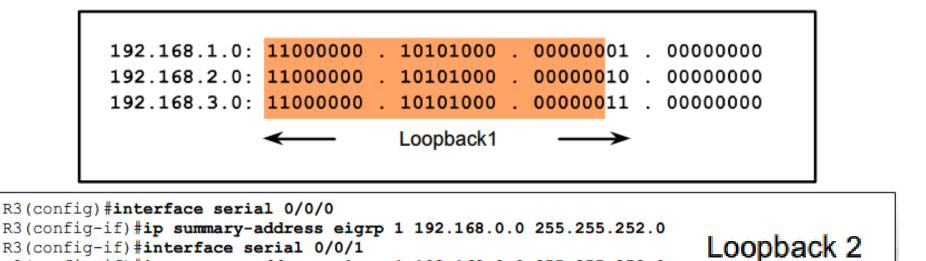
–Router(config-if)#ip summary-address eigrp as-number network-address subnet-mask

```
R3 (config) #inter loopback 2

R3 (config-if) #ip address 192.168.2.1 255.255.255.0

R3 (config-if) #interface loopback 3

R3 (config-if) #ip address 192.168.3.1 255.255.255.0


R3 (config-if) #router eigrp 1

R3 (config-router) #network 192.168.2.0

R3 (config-router) #network 192.168.3.0
```

Two simulated LANs are added to R3 using loopback interfaces. The networks are then configured as part of the EIGRP process.

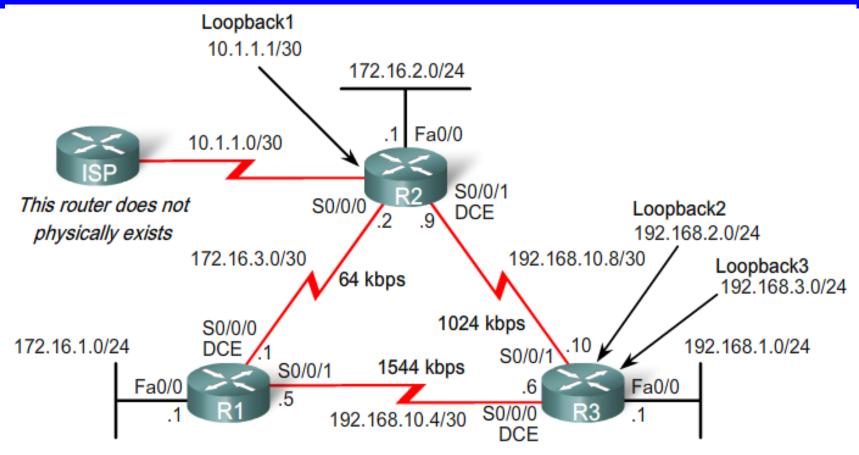
Suppose we added two more networks to router R3 using loopback interfaces: 192.168.2.0/24 and 192.168.3.0/24. We also configure networks in R3's EIGRP routing process with network commands so that R3 will propagate these networks to other routers.



#### Configure the summary route on all interfaces that send EIGRP packets.

Find the Summary using the same method used to summarize static routes:

1. Write out the networks that you want to summarize in binary.


R3(config-if) #ip summary-address eigrp 1 192.168.0.0 255.255.252.0

- 2. To find the subnet mask for summarization, start with the left-most bit.
- 3. Work your way to the right, finding all the bits that match consecutively.
- 4. The column of bits that do not match, are at the summary boundary.
- 5. Now, count the number of left-most matching bits, which in our example is 22.

6. To find the network address for summarization, copy the matching 22 bits and add all 0 bits to the end to make 32 bits.

The result is the summary network address and mask for 192.168.0.0/22.

#### 9.5.4 EIGRP Default Routes



Using a static route to 0.0.0/0 as a default route is not routing protocol dependent.

```
R2(config)#ip route 0.0.0.0 0.0.0.0 loopback 1
R2(config)#router eigrp 1
R2(config-router)#redistribute static
```

```
R2(config)#ip route 0.0.0.0 0.0.0.0 loopback 1
R2(config)#router eigrp 1
R2(config-router)#redistribute static
```

Using a static route to 0.0.0.0/0 as a default route is not routing protocol dependent. The "quad zero" static default route can be used with any currently supported routing protocols. The static default route is usually configured on the router that has a connection to a network outside the EIGRP routing domain, for example, to an ISP.

EIGRP requires the use of the redistribute static command to include this static default route with its EIGRP routing updates. The redistribute static command tells EIGRP to include this static route in its EIGRP updates to other routers. The figure shows the configuration of the static default route and the redistribute static command on router R2.

Note: The static default route is using the exit interface of Loopback1. This is because the ISP router in our topology does not physically exist. By using a loopback interface we can simulate a connection to another router.

#### **EIGRP Default Routes**

- "quad zero" static default route
  - -Can be used with any currently supported routing protocol

-Is usually configured on a router that is connected a network outside the EIGRP domain

EIGRP & the "Quad zero" static default route

-Requires the use of the redistribute static command to disseminate default route in EIGRP updates

#### 9.5.5 Fine Tuning EIGRP

# EIGRP Bandwidth Utilization

```
R1(config)#interface serial 0/0/0
R1(config-if)#bandwidth 64
R1(config-if)#ip bandwidth-percent eigrp 1 50
```

```
R2(config)#interface serial 0/0/0
R2(config-if)#bandwidth 64
R2(config-if)#ip bandwidth-percent eigrp 1 50
```

By default, EIGRP will use only up to 50 percent of the bandwidth of an interface for EIGRP information. This prevents the EIGRP process from over-utilizing a link and not allowing enough bandwidth for the routing of normal traffic. The ip bandwidth-percent eigrp command can be used to configure the percentage of bandwidth that may be used by EIGRP on an interface.

#### **Fine-Tuning EIGRP**

EIGRP bandwidth utilization

-By default, EIGRP uses only up to 50% of interface bandwidth for EIGRP information

-The command to change the percentage of bandwidth used by EIGRP is

Router(config-if)#ip bandwidth-percent eigrp asnumber percent

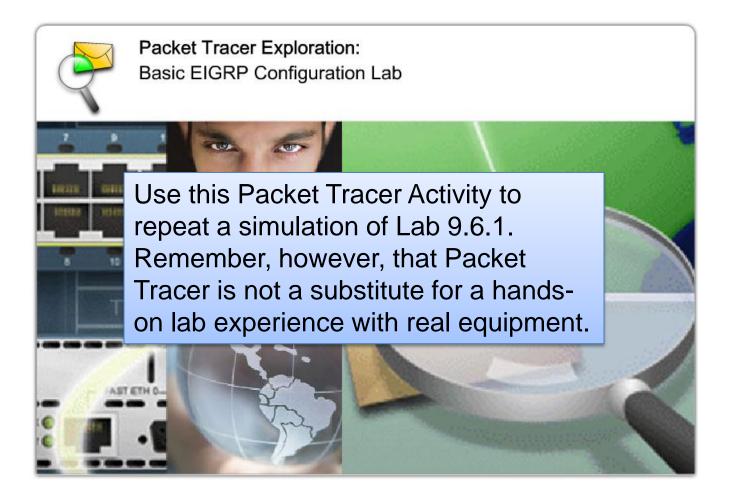
```
R2(config)#interface serial 0/0/0
R2(config-if)#bandwidth 64
R2(config-if)#ip bandwidth-percent eigrp 1 50
```

#### 9.5.5 Fine Tuning EIGRP

# **Configuring Hello Intervals and Hold Times**

- Hello intervals and hold times are configurable on a per-interface basis
- The command to configure hello interval is Router(config-if)#ip hello-interval eigrp as-number seconds
- Changing the hello interval also requires changing the hold time to a value greater than or equal to the hello interval
- The command to configure hold time value is

Router(config-if)#ip hold-time eigrp as-number seconds

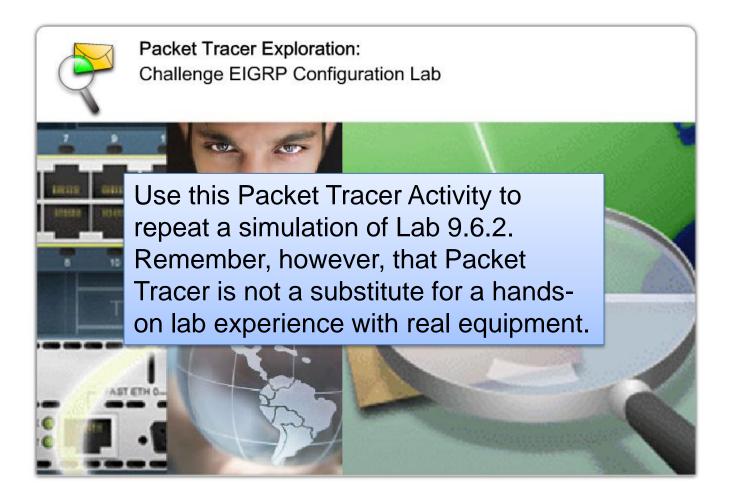

```
R2(config)#int s0/0/0
R2(config-if)#ip hello-interval eigrp 1 60
R2(config-if)#ip hold-time eigrp 1 180
R2(config-if)#end
```

#### 9.6.1 Basic EIGRP Configuration Lab



Hands-on Lab: Basic EIGRP Configuration Lab

In this lab, you will learn how to configure the routing protocol EIGRP. A loopback address will be used on the R2 router to simulate a connection to an ISP, where all traffic that is not destined for the local network will be sent. Some segments of the network have been subnetted using VLSM. EIGRP is a classless routing protocol that can be used to provide subnet mask information in the routing updates. This will allow VLSM subnet information to be propagated throughout the network.

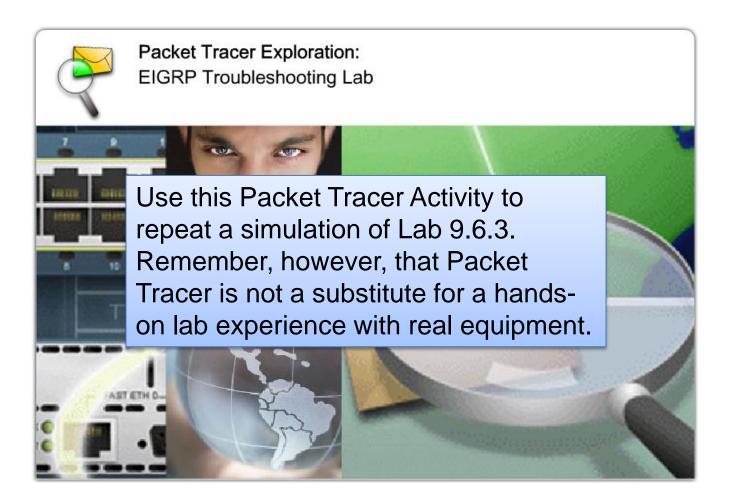



#### 9.6.2 Challenge EIGRP Configuration Lab



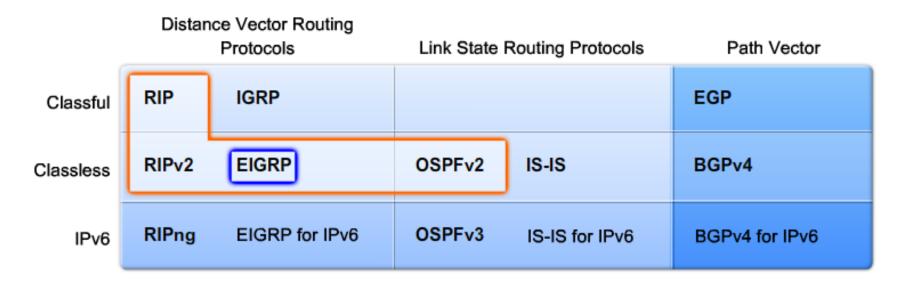
Hands-on Lab: Challenge EIGRP Configuration Lab

In this lab activity, you will be given a network address that must be subnetted using VLSM to complete the addressing of the network. A combination of EIGRP routing and static routing will be required so that hosts on networks that are not directly connected will be able to communicate with each other. EIGRP must be configured so that all IP traffic takes the shortest path to the destination address.




#### 9.6.3 EIGRP Troubleshooting Lab

#### Hands-on Lab: EIGRP Troubleshooting Lab


In this lab, you will begin by loading corrupted configuration scripts on each of the routers. These scripts contain errors that will prevent end-to-end communication across the network. You will need to troubleshoot each router to determine the configuration errors, and then use the appropriate commands to correct the configurations. When you have corrected all of the configuration errors, all of the hosts on the network should be able to communicate with each other.

#### 9.6.3 EIGRP Troubleshooting Lab



Interior Gateway Protocols

#### Exterior Gateway Protocols



# In this chapter, you have learned to: Describe the background and history of EIGRP.

- Describe the features and operation of EIGRP.
- Examine the basic EIGRP configuration commands and identify their purposes.
- Calculate the composite metric used by EIGRP.
- Describe the concepts and operation of DUAL.
- Describe the uses of additional configuration commands in EIGRP.

# Background & History

-EIGRP is a derivative of IGRP

 EIGRP is a Cisco proprietary distance vector routing protocol released in 1994

## EIGRP terms and characteristics

- -EIGPR uses RTP to transmit & receive EIGRP packets
- -EIGRP has 5 packet type:
  - Hello packets
  - Update packets
  - Acknowledgement packets
  - Query packets
  - Reply packets
- -Supports VLSM & CIDR

## EIGRP terms and characteristics

-EIGRP uses a hello protocol

 Purpose of hello protocol is to discover & establish adjacencies

- -EIGRP routing updates
  - Aperiodic
  - Partial and bounded
  - Fast convergence

# EIGRP commands

-The following commands are used for EIGRP configuration

RtrA(config)#router eigrp [autonomous-system #]

RtrA(config-router)#network network-number

-The following commands can be used to verify EIGRP

- Show ip protocols
- Show ip eigrp neighbors
- Show ip route

# EIGRP metrics include

- -Bandwidth (default)
- -Delay (default)
- -Reliability
- -Load

# DUAL

- -Purpose of DUAL
  - To prevent routing loops
- -Successor
  - Primary route to a destination
- -Feasible successor
  - Backup route to a destination
- -Feasible distance
  - Lowest calculated metric to a destination
- -Reported distance
  - The distance towards a destination as advertised by an upstream neighbor

# Choosing the best route

–After router has received all updates from directly connected neighbors, it can calculate its DUAL

- 1<sup>st</sup> metric is calculated for each route
- 2<sup>nd</sup> route with lowest metric is designated successor & is placed in routing table
- 3<sup>rd</sup> feasible successor is found

-Criteria for feasible successor: it must have lower reported distance to the destination than the installed route's feasible distance

–Feasible routes are maintained in topology table

# Automatic summarization

- -On by default
- -Summarizes routes on classful boundary
- -Summarization can be disabled using the following command

RtrA(config-if)#no auto-summary

#